Skip to main content
Log in

Nonlinear evolution of the atmosphere and ionosphere above a seismic epicenter. II. Numerical simulation

  • Published:
Geomagnetism and Aeronomy Aims and scope Submit manuscript

Abstract

The results of numerical simulation of the nonlinear evolution of an acoustic pulse propagating above an earthquake epicenter with preset energy parameters are presented. The interaction with charged plasma particles in the lower ionosphere is taken into account. The interaction between neutral and charged components is described by the diffusion mechanism of the disturbance of the density of charged ionospheric plasma components. The simulation was carried out for three values of earthquake magnitude M = 5; 6; and 7. It is ascertained that the numerical simulation results agree with analytical estimates made during the study of main regularities of seismic events that induce weak nonlinear effects in the atmosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Afraimovich, E.L., Perevalova, N.P., Plotnikov, A.V., and Uralov, A.M., The shock-acoustic waves generated by the earthquakes, Ann. Geophys., 2001, vol. 19, no. 4, pp. 395–409.

    Article  Google Scholar 

  • Ahmadov, R.R. and Kunitsyn, V.E., Simulation of generation and propagation of acoustic gravity waves in the atmosphere during a rocket flight, Int. J. Geomagn. Aeron., 2004, vol. 5, GI2002.

    Article  Google Scholar 

  • Akhmedov, R.R. and Kunitsyn, V.E., A numerical method for solving problems of the propagation of acoustic–gravity waves in the atmosphere up to ionospheric heights, Vestn. Mosk. Univ., Ser. 3: Fiz., Astron., 2003, no. 3, pp. 38–42.

    Google Scholar 

  • Akhmedov, R.R. and Kunitsyn, V.E., Simulation of the ionospheric disturbances caused by earthquakes and explosions, Geomagn. Aeron. (Engl. Transl.), 2004, vol. 44, no. 1, pp. 95–101.

    Google Scholar 

  • Astafyeva, E. and Heki, K., Dependence of waveform of near field coseismic ionospheric disturbances on focal mechanisms, Earth, Planets Space, 2009, no. 61, no. 7, pp. 939–943.

    Article  Google Scholar 

  • Astafyeva, E., Heki, K., Kiryushkin, V., Afraimovich, E., and Shalimov, S., Two-mode long distance propagation of coseismic ionosphere disturbances, J. Geophys. Res., 2009, vol. 114, A10307. doi 10.1029/2008.JA013853

    Article  Google Scholar 

  • Calais, E. and Minster, J.B., GPS detection of ionospheric perturbations following the January 17, 1994, Northridge earthquake, Geophys. Res. Lett., 1995, vol. 22, no. 9, pp. 1045–1048.

    Article  Google Scholar 

  • Ducic, V., Artru, J., and Lognonné, P., Ionospheric remote sensing of the Denali earthquake Rayleigh surface waves, Geophys. Res. Lett., 2003, vol. 30, no. 18, pp. 1951–1954. doi 10.1029/2003GL017812

    Article  Google Scholar 

  • Gershman, B.N., Dinamika ionosfernoi plazmy (Dynamics of Ionospheric Plasma), Moscow: Nauka, 1974.

    Google Scholar 

  • Gus’kov, K.G., Raizer, Yu.P., and Surzhikov, S.T., Threedimensional computational MHD-model of plasma expansion in an inhomogeneous ionized medium with a magnetic field, Mat. Model., 1992, vol. 4, no. 7, pp. 49–66.

    Google Scholar 

  • Heki, K. and Ping, J., Directivity and apparent velocity of the coseismic ionospheric disturbances observed with a dense GPS array, Earth, Planets Space Lett., 2005, no. 236, nos. 3–4, pp. 845–855.

    Article  Google Scholar 

  • Kherani, E.A., Lognonné, P., Hebert, H., Rolland, L., Astafyeva, E., Occhipinti, G., Coïsson, P., Walwer, D., and de Paula, E.R., Modelling of the total electronic content and magnetic field anomalies generated by the 2011 Tohoku-Oki tsunami and associated acoustic–gravity waves, Geophys. J. Int., 2012, vol. 191, no. 3, pp. 1049–1066.

    Google Scholar 

  • Kholodov, A.S., Kholodov, Ya.A., Stupitskii, E.L., and Repin, A.Yu., Numerical study of the behavior of highenergetic plasma bunch in the upper ionosphere, Mat. Model., 2004, vol. 16, no. 8, pp. 3–23.

    Google Scholar 

  • Krysanov, B.Yu., Kunitsyn, V.E., and Kholodov, A.S., MHD-based simulation of ionospheric perturbations generated in the atmospheric surface layer, Comput. Math. Math. Phys., 2011, vol. 51, no. 2, pp. 264–283.

    Article  Google Scholar 

  • Kunitsyn, V.E., Suraev, S.N., and Akhmedov, R.R., Modeling of atmospheric propagation of acoustic gravity waves generated by different surface sources, Moscow Univ. Phys. Bull., 2007, vol. 62, no. 2, pp. 122–125.

    Article  Google Scholar 

  • Kunitsyn, V.E., Nesterov, I.A., and Shalimov, S.L., Japan megathrust earthquake on March 11, 2011: GPS-TEC evidence for ionospheric disturbances, JETP Lett., 2011, vol. 94, no. 8, pp. 616–620.

    Article  Google Scholar 

  • Lebedev, S.V. and Pavlov, V.A., Komp’yuternoe modelirovanie vozdeistviya zemletryasenii i moshchnykh vzryvov na atmosferu, Vestn. S.-Peterb. Univ., Ser. 4: Fiz., Khim., 2009, no. 2, pp. 53–62.

    Google Scholar 

  • Occhipinti, G., Coïsson, P., Makela, J.J., Allgeyer, S., Kherani, A., Hebert, H., and Lognonne, P., Threedimensional numerical modeling of tsunami-related internal gravity waves in the Hawaiian atmosphere, Earth, Planets Space, 2011, vol. 63, no. 7, pp. 847–851.

    Article  Google Scholar 

  • Occhipinti, G., Rolland, L., Lognonné, P., and Watada, S., From Sumatra 2004 to Tohoku-Oki 2011: The systematic GPS detection of the ionospheric signature induced by tsunamigenic earthquakes, J. Geophys. Res., 2013, vol. 118, no. 6, pp. 3626–3636.

    Article  Google Scholar 

  • Pavlov, V.A. and Lebedev, S.V., Nonlinear evolution of the atmosphere above a seismic epicenter: 1. Analytical estimates, Geomagn. Aeron. (Engl. Transl.), 2013, vol. 53, no. 6, pp. 794–803.

    Article  Google Scholar 

  • Rolland, L., Lognonné, P., and Munekane, H., Detection and modeling of Rayleigh wave induced patterns in the ionosphere, J. Geophys. Res., 2011, vol. 116, A05320. doi 10.1029/2010JA016060

    Article  Google Scholar 

  • Stupitskii, E.L., Repin, A.Yu., and Kholodov, Ya.A., The behavior of high-energetic plasma bunch in the upper ionosphere. Part 1. The initial stage of the expansion and inhibition of plasma bunch, Mat. Model., 2004, vol. 16, no. 7, pp. 43–58.

    Google Scholar 

  • Tereshchenko, V.D., Vasil’ev, E.B., Tereshchenko, V.A., Ogloblina, O.F., and Chernyakov, S.M., Ionospheric effects of the Kola meteorite flight and explosion, in Trudy Regional’noi XX konferentsii po rasprostraneniyu radiovoln, 18–20 noyabrya 2014 g. (Proceedings of the XX Conference on Radio Wave Propagation, November 18–20, 2014), St. Petersburg, 2014, pp. 32–35.

    Google Scholar 

  • Ulomov, V.I., Researches on seismic hazard assessment in Russia, in SHR IUGG-, 2003 Special Volume, 2004, pp. 45–67.

    Google Scholar 

  • Yasyukevich, Yu.V., Zakharov, V.I., Kunitsyn, V.E., and Voeikov, S.V., The response of the ionosphere to the earthquake in Japan on March 11, 2011 as estimated by different GPS-based methods, Geomagn. Aeron. (Engl. Transl.), 2015, vol. 55, no. 1, pp. 108–117.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Pavlov.

Additional information

Original Russian Text © V.A. Pavlov, S.V. Lebedev, 2017, published in Geomagnetizm i Aeronomiya, 2017, Vol. 57, No. 5, pp. 647–655.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pavlov, V.A., Lebedev, S.V. Nonlinear evolution of the atmosphere and ionosphere above a seismic epicenter. II. Numerical simulation. Geomagn. Aeron. 57, 602–609 (2017). https://doi.org/10.1134/S0016793217040144

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016793217040144

Navigation