Skip to main content
Log in

Excitation of ion-acoustic waves in the high-latitude ionosphere

  • Published:
Geomagnetism and Aeronomy Aims and scope Submit manuscript

Abstract

The broadband electrostatic turbulence generally observed in the high-latitude ionosphere is a superposition of nonlocal waves of ion-acoustic and ion-cyclotron types. In the presence of a shear of ion parallel velocity, ion-acoustic modes can be induced by an instability emerging due to an inhomogeneous distribution of energy density. This paper is devoted to the studies of excitation of oblique ion-acoustic wave in background configurations with inhomogeneous profiles of both electric field and ion parallel velocity. A numerical algorithm has been developed, and instability was simulated at various parameters of background plasma. The general possibility of oblique ion-acoustic wave generation by a gradient of ion parallel velocity is shown. In this case, the wave spectrum is found to be broadband, which agrees with satellite observations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amatucci, W.E., Walker, D.N., Ganguli, G., Duncan, D., Antoniades, J.A., Bowles, J.H., Gavrishchaka, V., and Koepke, M.E., Velocity-shear-driven ion-cyclotron waves and associated transverse ion heating, J. Geophys. Res., 1998, vol. 103, pp. 11711–11724. doi 10.1029/98JA00659

    Article  Google Scholar 

  • Andre, M., Norqvist, P., Andersson, L., Eliasson, L., Eriksson, A.I., Blomberg, L., Erlandson, R.E., and Waldemark, J., Ion energization mechanisms at 1700 km in the auroral region, J. Geophys. Res., 1998, vol. 103, pp. 4199–4222. doi 10.1029/97JA00855

    Article  Google Scholar 

  • Bonnell, J., Kintner, P., Wahlund, J.-E., Lynch, K., and Arnoldy, R., Interferometric determination of broadband elf wave phase velocity within a region of transverse auroral ion acceleration, Geophys. Res. Lett., 1996, vol. 23, pp. 3297–3300. doi 10.1029/96GL03238

    Article  Google Scholar 

  • Chernyshov, A.A., Ilyasov, A.A., Mogilevsky, M.M., Golovchanskaya, I.V., and Kozelov, B.V., Vliyanie neodnorodnostei kontsentratsii plazmy i elektricheskogo polya na generatsiyu elektrostaticheskogo shuma v avroral’noi zone, Plasma Phys. Rep., 2015, vol. 41, no. 3, pp. 254–261.

    Article  Google Scholar 

  • Chernyshov, A.A., Ilyasov, A.A., Mogilevsky, M.M., Golovchanskaya, I.V., and Kozelov, B.V., Influence of inhomogeneities of the plasma density and electric field on the generation of electrostatic noise in the auroral zone, Cosmic Res., 2016, vol. 54, no. 1, pp. 52–60.

    Article  Google Scholar 

  • Ganguli, G. and Palmadesso, P.J., Electrostatic ion instabilities in the presence of parallel currents and transverse electric fields, Geophys. Res. Lett., 1998, vol. 15, pp. 103–106. doi 10.1029/GL015i001p00103

    Article  Google Scholar 

  • Ganguli, G., Lee, Y.C., and Palmadesso, P.G., Electrostatic ion-cyclotron instability caused by a nonuniform electric field perpendicular to the external magnetic field, Phys. Fluids, 1985, vol. 28, pp. 761–763.

    Article  Google Scholar 

  • Ganguli, G., Keskine, M.J., Romero, H., Heelis, R., Moore, T., and Pollock, C., Coupling of microprocesses and macroprocesses due to velocity shear: An application to the low-altitude ionosphere, J. Geophys. Res., 1994, vol. 99, pp. 8873–8889. doi 10.1029/93JA03181

    Article  Google Scholar 

  • Gavrishchaka, V., Koepke, M.E., and Ganguli, G., Dispersive properties of a magnetized plasma with a field-aligned drift and inhomogeneous transverse flow, Phys. Plasmas, 1996, vol. 3, pp. 3091–3106. doi 10.1063/1.871656

    Article  Google Scholar 

  • Gavrishchaka, V.V., Ganguli, S.B., and Ganguli, G.I., Origin of low-frequency oscillations in the ionosphere, Phys. Rev. Lett., 1998, vol. 80, pp. 728–731. doi 10.1103/PhysRevLett.80.728

    Article  Google Scholar 

  • Gavrishchaka, V.V., Ganguli, S.B., and Ganguli, G.I., Electrostatic oscillations due to filamentary structures in the magnetic-field-aligned flow: The ion-acoustic branch, J. Geophys. Res., 1999, vol. 104, no. A6, pp. 12683–12693. doi 10.1029/1999JA900094

    Article  Google Scholar 

  • Goebel, D.M. and Katz, I., Fundamentals of Electric Propulsion: Ion and Hall Thrusters, New Jersey: Wiley, 2008.

    Book  Google Scholar 

  • Golovchanskaya, I.V., Kozelov, B.V., and Despirak, I.V., Investigation of the broadband ELF turbulence by observations of the FAST satellite, Geomagn. Aeron. (Engl. Transl.), 2012, vol. 52, no. 4, pp. 474–481.

    Article  Google Scholar 

  • Golovchanskaya, I.V., Kozelov, B.V., Chernyshov, A.A., Mogilevsky, M.M., and Ilyasov, A.A., Branches of electrostatic turbulence inside solitary plasma structures in the auroral ionosphere, Phys. Plasmas, 2014a, vol. 21, no. 8, 082903. doi 10.1063/1.4891668

    Article  Google Scholar 

  • Golovchanskaya, I.V., Kozelov, B.V., Mingalev, I.V., Melnik, M.N., and Lubchic, A.A., Evaluation of a spaceobserved electric field structure for the ability to destabilize inhomogeneous energy-density-driven waves, Ann. Geophys., 2014b, vol. 32, pp. 1–6. doi 10.5194/angeo-32-1-2014

    Article  Google Scholar 

  • Ilyasov, A.A., Chernyshov, A.A., Mogilevsky, M.M., Golovchanskaya, I.V., and Kozelov, B.V., Inhomogeneities of plasma density and electric field as sources of electrostatic turbulence in the auroral region, Phys. Plasmas, 2015, vol. 22, no. 3, 032906. doi 10.1063/1.4916125

    Article  Google Scholar 

  • Kadomtsev, B.B., Mikhailovskii, A.B., and Timofeev, A.V., Waves with negative energy in dispersive media, Zh. Eksp. Teor. Fiz., 1964, vol. 47, pp. 2266–2269.

    Google Scholar 

  • Kindel, J.M. and Kennel, C.F., Topside current instabilities, J. Geophys. Res., 1971, vol. 76, pp. 3055–3078. doi 10.1029/JA076i013p03055

    Article  Google Scholar 

  • Kintner, P.M., Franz, J., Schuc, P., and Klatt, E., Interferometric coherency determination of wavelength or what are broadband elf waves?, J. Geophys. Res., 2000, vol. 105, pp. 237–250. doi 10.1029/1999JA000323

    Article  Google Scholar 

  • Lund, E.J., On the dissipation scale of broadband elf waves in the auroral region, J. Geophys. Res., 2010, vol. 115, A01201. doi 10.1029/2009JA014545

    Article  Google Scholar 

  • Mikhailovskii, A.B., Teoriya plazmennykh neustoichivostei (Theory of Plasma Instabilities), vol. 1, Moscow: Atomizdat, 1975.

    Google Scholar 

  • Stasiewicz, K., Khotyaintsev, Y., Berthomier, M., and Wahlund, J.-E., Identification of widespread turbulence of dispersive Alfvén waves, J. Geophys. Res., 2000, vol. 27, pp. 173–176. doi 10.1029/1999GL010696

    Google Scholar 

  • Volwerk, M., Louarn, P., Chust, T., Roux, A., de Feraudy, H., and Holback, B., Solitary kinetic Alfvén waves: A study of the pointing flux, J. Geophys. Res., 1996, vol. 101, no. A6, pp. 13335–13343. doi 10.1029/96JA00166

    Article  Google Scholar 

  • Wahlund, J.-E., Louarn, P., Chust, T., et al., Observations of ion acoustic fluctuations in the auroral topside ionosphere by the FREJA S/C, Geophys. Res. Lett., 1994, vol. 21, pp. 1835–1838. doi 10.1029/94GL01290

    Article  Google Scholar 

  • Wahlund, J.-E., Eriksson, A.I., Holback, B., et al., Broadband ELF plasma emission during auroral energization: 1. Slow ion acoustic waves, J. Geophys. Res., 1998, vol. 103, no. A3, pp. 4343–4375.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Chernyshov.

Additional information

Original Russian Text © A.A. Chernyshov, A.A. Ilyasov, M.M. Mogilevsky, I.V. Golovchanskaya, B.V. Kozelov, 2017, published in Geomagnetizm i Aeronomiya, 2017, Vol. 57, No. 3, pp. 333–342.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chernyshov, A.A., Ilyasov, A.A., Mogilevsky, M.M. et al. Excitation of ion-acoustic waves in the high-latitude ionosphere. Geomagn. Aeron. 57, 308–316 (2017). https://doi.org/10.1134/S0016793217030045

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016793217030045

Navigation