Skip to main content
Log in

Comparative analysis of atmospheric and ionospheric variability by measurements of temperature in the mesopause region and peak electron density NmF2

  • Published:
Geomagnetism and Aeronomy Aims and scope Submit manuscript

Abstract

The results of studying the atmospheric and ionospheric variability in the region of Eastern Siberia are presented. The analysis involved data on the atmosphere temperature at mesopause heights (Tm) and vertical sounding data on the peak electron density (NmF2). The data on temperature were obtained by spectrometric observations of the hydroxyl molecule emission (band ОН (6-2), 834.0 nm, maximum emission height ~87 km). The analysis covers the period from 2008 to 2015. Seasonal and year-to-year variations in the variability of Tm and NmF2 were studied and compared in different time periods: day-to-day variations (T > 24 h), tidal variations (8 h ≤ T ≤ 24 h), and variations with periods of internal gravity waves (T < 8 h). Both common features and distinctions in the behavior of the analyzed parameters have been found, and their possible physical causes are analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alexander, M.J., Geller, M., McLandres, C., et al., Recent developments in gravity-wave effects in climate models and the global distribution of gravity-wave momentum flux from observations and models, Q. J. R. Meteorol. Soc., 2010, vol. 136, no. 650, pp. 1103–1124. doi 10.1002/qj.637

    Google Scholar 

  • Altadill, D., Apostolov, E.M., Boška, J., and Laštovička, J., Planetary and gravity wave signatures in the F-region ionosphere with impact on radio propagation predictions and variability, Ann. Geophys., 2004, vol. 47, nos. 2/3, pp. 1109–1119.

    Google Scholar 

  • Altadill, D., Time/altitude electron density variability above Ebro, Spain, Adv. Space Res., 2007, vol. 39, no. 5, pp. 962–969.

    Article  Google Scholar 

  • Araujo-Pradere, E.A., Fuller-Rowell, T.J., Codrescu, M.V., and Bilitza, D., Characteristics of the ionospheric variability as a function of season latitude local time and geomagnetic activity, Radio Sci., 2005, vol. 40, no. 5, RS5009. doi 10.1029/2004RS003179

    Article  Google Scholar 

  • Aushev, V.M., Fedulina, I.N., Gordienko, G.I., López-González, M.J., Pogoreltsev, A.I., Ryazapova, S.Sh., and Shepherd, M.G., Springtime effects in the mesosphere and ionosphere observed at northern midlatitudes, Planet. Space Sci., 2006, vol. 54, no. 6, pp. 559–571.

    Article  Google Scholar 

  • Baker, D.J. and Stair, A.T., Rocket measurements of the altitude distributions of the hydroxyl airglow, Phys. Scr., 1988, vol. 37, no. 4, pp. 611–622.

    Article  Google Scholar 

  • Bittner, M., Offermann, D., Graef, H.-H., Donner, M., and Hamilton, K., An 18-year time series of OH rotational temperatures and middle atmosphere decadal variations, J. Atmos. Sol.–Terr. Phys., 2002, vol. 64, nos. 8–11, pp. 1147–1166.

    Article  Google Scholar 

  • Chandran, A., Collins, R.L., and Harvey, V.L., Stratosphere-mesosphere coupling during stratospheric sudden warming events, Adv. Space Res., 2014, vol. 53, no. 9, pp. 1265–1289. doi 10.1016/j.asr.2014.02.005

    Article  Google Scholar 

  • Deminov, M.G., Deminova, G.F., Zherebtsov, G.A., and Polekh, N.M., Statistical properties of variability of the quiet ionosphere F2-layer maximum parameters over Irkutsk under low solar activity, Adv. Space Res., 2013, vol. 51, no. 5, pp. 702–711.

    Article  Google Scholar 

  • Forbes, J.M., Palo, S.E., and Zhang, X., Variability of the ionosphere, J. Atmos. Sol.–Terr. Phys., 2000, vol. 62, no. 8, pp. 685–693.

    Article  Google Scholar 

  • Goncharenko, L. and Zhang, S.-R., Ionospheric signatures of sudden stratospheric warming: Ion temperature at middle latitude, Geophys. Res. Lett., 2008, vol. 35, no. 21, L21103. doi 10.1029/2008GL035684

    Article  Google Scholar 

  • Goncharenko, L., Chau, J.L., Condor, P., Coster, A., and Benkevitch, L., Ionospheric effects of sudden stratospheric warming during moderate-to-high solar activity: Case study of January 2013, Geophys. Res. Lett., 2013, vol. 40, no. 19, pp. 4982–4986. doi 10.1002/grl.50980

    Article  Google Scholar 

  • Kazimirovsky, E.S., Coupling from below as a source of ionospheric variability: A review, Ann. Geophys., 2002, vol. 45, no. 1, pp. 1–29.

    Google Scholar 

  • Klimenko, M.V., Klimenko, V.V., Bessarab, F.S., Korenkov, Y.N., Liu, H., Goncharenko, L.P., and Tolstikov, M.V., Study of the thermospheric and ionospheric response to the 2009 sudden stratospheric warming using TIME-GCM and GSM TIP models: First results, J. Geophys. Res.: Space Phys., 2015, vol. 120, no. 9, pp. 7873–7888. doi 10.1002/2014JA020861

    Article  Google Scholar 

  • Korenkov, Y.N., Klimenko, V.V., Klimenko, M.V., et al., The global thermospheric and ionospheric response to the 2008 minor sudden stratospheric warming event, J. Geophys. Res., 2012, vol. 117, no. A10, A10309. doi 10.1029/2012JA018018

    Article  Google Scholar 

  • Limpasuvan, V., Richter, J.H., Orsolini, Y.J., Stordal, F., and Kvissel, O.-K., The roles of planetary and gravity waves during a major stratospheric sudden warming as characterized in WACCM, J. Atmos. Sol.–Terr. Phys., 2012, vols. 78–79, pp. 84–98.

    Google Scholar 

  • Liu, H.-L., Roble, R.G., Taylor, M.J., and Pendleton, W.R., Mesospheric planetary waves at northern hemisphere fall equinox, Geophys. Res. Lett., 2001, vol. 28, no. 9, pp. 1903–1906.

    Article  Google Scholar 

  • Liu, L., He, M., Yue, X., Ning, B., and Wan, W., Ionosphere around equinoxes during low solar activity, J. Geophys. Res., 2010, vol. 115, no. A9, A09307. doi 10.1029/2010JA015318

    Google Scholar 

  • Matthias, V., Shepherd, T.G., Hoffmann, P., and Rapp, M., The hiccup: a dynamical coupling process during the autumn transition in the northern hemisphere -similarities and differences to sudden stratospheric warmings, Ann. Geophys., vol. 33, no. 2, p. 5194.

  • Medvedev, A.V., Ratovsky, K.G., Tolstikov, M.V., Alsatkin, S.S., and Scherbakov, A.A., Studying of the spatial–temporal structure of wavelike ionospheric disturbances on the base of Irkutsk incoherent scatter radar and Digisonde data, J. Atmos. Sol.–Terr. Phys., 2013, vol. 105, pp. 350–357.

    Article  Google Scholar 

  • Medvedeva, I. and Ratovsky, K., Studying atmospheric and ionospheric variabilities from long-term spectrometric and radio sounding measurements, J. Geophys. Res.: Space Phys., 2015, vol. 120, no. 6, pp. 5151–5159. doi 10.1002/2015JA021289

    Article  Google Scholar 

  • Medvedeva, I.V., Perminov, V.I., and Semenov, A.I., Wave seasonal activity effect on the mesopause temperature mode from hydroxil emission observations in Eastern Siberia and European Russia, Soln.-Zemnaya Fiz., 2013, vol. 22, pp. 62–64.

    Google Scholar 

  • Medvedeva, I., Medvedev, A., Ratovsky, K., Shcherbakov, A., and Tolstikov, M., Comprehensive study of disturbances of the neutral atmosphere and ionosphere parameters over Eastern Siberia during the 2013 January major sudden stratospheric warming, Adv. Space Res., 2015, vol. 56, no. 9, pp. 1877–1885. doi 10.1016/j.asr.2015.06.008

    Article  Google Scholar 

  • Mikhailov, A.V. and Schlegel, K., Equinoctial transitions in the ionosphere and thermosphere, Ann. Geophys., 2001, vol. 19, no. 7, pp. 783–796.

    Article  Google Scholar 

  • Offermann, D., Gusev, O., Donner, M., Forbes, J.M., Hagan, M., Mlynczak, M.G., Oberheide, J., Preusse, P., Schmidt, H., and Russell, J.M., Relative intensities of middle atmosphere waves, J. Geophys. Res., 2009, vol. 114, D06110. doi 10.1029/2008JD010662

    Google Scholar 

  • Oleynikov, A.N., Sosnovchik, D.M., Kukush, V.D., Jacobi, Ch., and Frohlich, K., Seasonal variation of space–time parameters of internal gravity waves at Kharkiv (49°30′ N, 36°51′ E), J. Atmos. Sol.–Terr. Phys., 2007, vol. 69, nos. 17–18, pp. 2257–2264.

    Article  Google Scholar 

  • Pancheva, D., Mukhtarov, P., and Andonov, B., Nonmigrating tidal activity related to the sudden stratospheric warming in the Arctic winter of 2003/2004, Ann. Geophys., 2009, vol. 27, no. 3, pp. 975–987.

    Article  Google Scholar 

  • Perminov, V.I., Semenov, A.I., and Shefov, N.N., On rotational temperature of the hydroxyl emission, Geomagn. Aeron. (Engl. Transl.), 2007, vol. 47, no. 6, pp. 756–763.

    Article  Google Scholar 

  • Perminov, V.I., Semenov, A.I., Medvedeva, I.V., and Pertsev, N.N., Temperature variations in the mesopause region according to the hydroxyl-emission observations at midlatitudes, Geomagn. Aeron. (Engl. Transl.), 2014a, vol. 54, no. 2, pp. 230–239.

    Google Scholar 

  • Perminov, V.I., Semenov, A.I., Medvedeva, I.V., and Zheleznov, Yu.A., Variability of mesopause temperature from the hydroxyl airglow observations over midlatitudinal sites, Zvenigorod and Tory, Russia, Adv. Space Res., 2014b, vol. 54, no. 12, pp. 2511–2517. doi 10.1016/j.asr.2014.01.027

    Google Scholar 

  • Ratovsky, K.G., Medvedev, A.V., and Tolstikov, M.V., Diurnal, seasonal and solar activity pattern of ionospheric variability from, Irkutsk: Digisonde data, Adv. Space Res., 2015, vol. 55, no. 8, pp. 2041–2047.

    Article  Google Scholar 

  • Reisin, E.R. and Scheer, J., Gravity wave activity in the mesopause region from airglow measurements at El Leoncito, J. Atmos. Sol.–Terr. Phys., 2004, vol. 66, nos. 6–9, pp. 655–661.

    Article  Google Scholar 

  • Rishbeth, H. and Mendillo, M., Patterns of F2-layer variability, J. Atmos. Sol.–Terr. Phys., 2001, vol. 63, no. 15, pp. 1661–1680.

    Article  Google Scholar 

  • Semenov, A.I., Bakanas, V.V., Perminov, V.I., Zheleznov, Yu.A., and Khomich, V.Yu., The near infrared spectrum of the emission of the nighttime upper atmosphere of the Earth, Geomagn. Aeron. (Engl. Transl.), 2002, vol. 42, no. 3, pp. 390–397.

    Google Scholar 

  • Shefov, N.N., Semenov, A.I., and Khomich, V.Yu., Izluchenie verkhnei atmosfery — indikator ee struktury i dinamiki (Upper Atmospheric Radiation: an Indicator of Its Structure and Dynamics), Moscow: GEOS, 2006.

    Google Scholar 

  • Shepherd, G.G., Stegman, J., Espy, P., McLandress, C., Thuillier, G., and Wiens, R.H., Springtime transition in lower thermospheric atomic oxygen, J. Geophys. Res., 1999, vol. 104, no. A1, pp. 213–223.

    Article  Google Scholar 

  • Shepherd, G.G., Stegman, J., Singer, W., and Roble, R., Equinox transition in wind and airglow observations, J. Atmos. Sol.–Terr. Phys., 2004, vol. 66, nos. 6–9, pp. 481–491.

    Article  Google Scholar 

  • Shepherd, M.G., Espy, P.J., She, C.Y., Hocking, W., Keckhut, P., Gavrilyeva, G., Shepherd, G.G., and Naujokat, B., Springtime transition in the mesospheric temperature in the northern hemisphere, J. Atmos. Sol.–Terr. Phys., 2002, vol. 64, nos. 8–11, pp. 1183–1199.

    Article  Google Scholar 

  • Siskind, D.E., Eckermann, S.D., McCormack, J.P., Coy, L., Hoppel, K.W., and Baker, N.L., Case studies of the mesospheric response to recent minor, major and extended stratospheric warmings, J. Geophys. Res., 2010, vol. 115, D00N03. doi 10.1029/2010JD014114

    Google Scholar 

  • Stray, N.H., de Wit, R.J., Espy, P.J., and Hibbins, R.E., Observational evidence for temporary planetary wave forcing of the MLT during fall equinox, Geophys. Res. Lett., 2014, vol. 41, no. 17, pp. 6281–6288. doi 10.1002/2014GL061119

    Article  Google Scholar 

  • Tweedy, O.V., Limpasuvan, V., Orsolini, Y.J., et al., Nighttime secondary ozone layer during major stratospheric sudden warmings in specified-dynamics WACCM, J. Geophys. Res., 2013, vol. 118, pp. 1–13. doi 10.1002/jgrd.50651

    Google Scholar 

  • Vargin, P.N. and Medvedeva, I.V., Temperature and dynamical regimes of the Northern Hemisphere extratropical atmosphere during sudden stratospheric warming in winter 2012–2013, 2015, vol. 51, no. 1, pp. 1–11. doi 10.1134/S0001433814060176

    Google Scholar 

  • Walterscheid, R.L., Sivjee, G.G., and Roble, R.G., Mesospheric and lower thermospheric manifestations of a stratospheric warming event over Eureka, Canada (80N), Geophys. Res. Lett., 2000, vol. 27, no. 18, pp. 2897–2900. doi 10.1029/2000GL003768

    Article  Google Scholar 

  • Yigit, E. and Medvedev, A., Internal wave coupling processes in Earth’s atmosphere, Adv. Space Res., 2015, vol. 55, no. 4, pp. 983–1003. doi 10.1016/j.asr.2014.11.020

    Article  Google Scholar 

  • Zhang, S.-R. and Holt, J.M., Ionospheric climatology and variability from long-term and multiple incoherent scatter radar observations: Variability, Ann. Geophys., 2008, vol. 26, no. 6, pp. 1525–1537.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to I. V. Medvedeva or K. G. Ratovsky.

Additional information

Original Russian Text © I.V. Medvedeva, K.G. Ratovsky, 2017, published in Geomagnetizm i Aeronomiya, 2017, Vol. 57, No. 2, pp. 236–248.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Medvedeva, I.V., Ratovsky, K.G. Comparative analysis of atmospheric and ionospheric variability by measurements of temperature in the mesopause region and peak electron density NmF2. Geomagn. Aeron. 57, 217–228 (2017). https://doi.org/10.1134/S0016793217020104

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016793217020104

Navigation