Geomagnetism and Aeronomy

, Volume 57, Issue 2, pp 156–176 | Cite as

Changes in the chemical composition of the atmosphere in the polar regions of the Earth after solar proton flares (3d modeling)

  • A. A. Krivolutsky
  • T. Yu. Vyushkova
  • I. A. Mironova


The paper presents the results of numerical photochemical simulations of the impact of the most powerful solar proton flares during the 23rd solar cycle on the ozonosphere in the polar regions of the Earth. A global 3D photochemical model, CHARM, developed at Central Aerological Observatory (CAO) was used in the simulations. The model introduces an additional source of nitrogen atoms and OH radicals. These components are formed due to the ionization effect of solar protons in the Earth’s atmosphere. The ionization rate was determined from data on proton fluxes measured by GOES satellites. The production rate of additional NO x and HО x molecules per ion pair was based on published theoretical studies. It is shown that the most intense flares in the 23rd solar cycle (2000, 2001, and 2003) destroyed ozone in the mesosphere to a great extent (sometimes completely, for example, during the July 14, 2000, event). It is found that the response of ozone to solar proton events follows a seasonal pattern. For the first time, the long-term effect of solar proton events is identified; it is approximately one year.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bazilevskaya, G.A., Usoskin, I.G., Fluckiger, E.O., et al., Cosmic ray induced ion production in the atmosphere, Space Sci. Rev., 2008, vol. 137, pp. 149–173.CrossRefGoogle Scholar
  2. COSPAR International Reference Atmosphere (CIRA). Part III: Trace Constituent Reference Models, Keating, G.M., Ed., Oxford: Pergamon, 1996, Adv. Space Res., 1996, vol. 18, nos. 9–10.Google Scholar
  3. Fabian, P., Pyle, J.A., and Wells, R.J., The August 1972 solar proton event and the atmospheric ozone layer, Nature, 1979, vol. 277, pp. 458–460.CrossRefGoogle Scholar
  4. Funke, B., Baumgaertner, A., Calisto, M., et al., Composition changes after the “Halloween” solar proton event: The High Energy Particle Precipitation in the Atmosphere (HEPPA) model versus MIPAS data intercomparison study, Atmos. Chem. Phys., 2011, vol. 11, no. 3, pp. 9089–9139.CrossRefGoogle Scholar
  5. Jackman, C.H., Douglass, A.R., Rood, R.B., et al., Effect of solar proton events on the middle atmosphere during the past two solar cycles as computed using two-dimensional model, J. Geophys. Res., 1990, vol. 95, no. D6, pp. 7417–7428. doi 10.1029/JD095iD06p07417CrossRefGoogle Scholar
  6. Jackman, C.H., McPeters, R.D., Labaw, G.J., et al., Northern hemisphere atmospheric effects due to the July 2000 solar proton event, Geophys. Res. Lett., 2001, vol. 28, no. 15, pp. 2883–2886.CrossRefGoogle Scholar
  7. Krivolutsky, A., Kuminov, A., and Vyushkova, T.Yu., Ionization of the atmosphere caused by solar protons and its influence on ozonosphere of the earth during 1994–2003, J. Atmos. Sol.-Terr. Phys., 2005, vol. 67, nos. 1–2, pp. 105–117.CrossRefGoogle Scholar
  8. Krivolutsky, A.A., Klyuchnikova, A.V., Zakharov, G.R., Vyushkova, T.Yu., and Kuminov, A.A., Dynamical response of the middle atmosphere to solar proton event of July 2000: Three-dimensional model simulations, Adv. Space Res., 2006, vol. 37, no. 8, pp. 1602–1613.CrossRefGoogle Scholar
  9. Krivolutsky, A.A., Kuminov, A.A., Kukoleva, A.A., Repnev, A.I., Pereyaslova, N.K., and Nazarova, M.N., Solar proton activity during cycle 23 and changes in the ozonosphere: Numerical simulation and analysis of observational data, Geomagn. Aeron. (Engl. Transl.), 2008, vol. 48, no. 4, pp. 432–445.CrossRefGoogle Scholar
  10. Krivolutsky, A.A., V’yushkova, T.Yu., Cherepanova, L.A., Kukoleva, A.A., Repnev, A.I., and Banin, M.V., The three-dimensional photochemical model CHARM. Incorporation of solar activity, Geomagn. Aeron. (Engl. Transl.), 2015a, vol. 55, no. 1, pp. 59–88. doi 10.7868/S0016794015010071Google Scholar
  11. Krivolutsky, A.A., Cherepanova, L.A., Dement’eva, A.V., Repnev, A.I., and Klyuchnikova, A.V., Global circulation of the Earth’s atmosphere at altitudes from 0 to 135 km simulated with the ARM model. Consideration of the solar activity contribution, Geomagn. Aeron. (Engl. Transl.), 2015b, vol. 55, no. 6, pp. 780–800. doi 10.7868/S0016794015060061Google Scholar
  12. Mironova, I.A., Aplin, K.L., Arnold, F., Bazilevskaya, G.A., Harrison, R.G., Krivolutsky, A.A., Nicoll, K.A., Rozanov, E.V., Turunen, E., and Usoskin, I.G., Energetic particle influence on the Earth’s atmosphere, Space Sci. Rev., 2015, vol. 194, nos. 1–4, pp. 1–96.CrossRefGoogle Scholar
  13. Models and Measurements Intercomparison II, NASA/TM-1999-209554, 1999.Google Scholar
  14. Panasyuk, M.I., Kuznetsov, S.N., Lazutin, L.L., et al., Magnetic Storms in October 2003, Collaboration “Solar Extreme Events in 2003 (SEE-2003)”, Cosmic Res., 2004, vol. 42, no. 5, pp. 489–534.CrossRefGoogle Scholar
  15. Porter, H.S., Jackman, C.H., and Green, A.E.S., Efficiencies for production of atomic nitrogen and oxygen by relativistic proton impact in air, J. Chem. Phys., 1976, vol. 65, no. 1. doi 10.1063/1.432812Google Scholar
  16. Prather, M., Numerical advection by conservation of second-order moments, J. Geophys. Res., 1986, vol. 91, no. D6, pp. 6671–6681.CrossRefGoogle Scholar
  17. Randall, C.E., Harvey, V.L., Manney, G.L., et al., Stratospheric effects of energetic particle precipitation in 2003–2004, Geophys. Res. Lett., 2005, vol. 32, L05802. doi 10.1029/2004GL022003CrossRefGoogle Scholar
  18. Sander, S.P., Friedl, R.R., Barker, J.R., et al., Chemical Kinetics and Photochemical Data for Use in Atmospheric Modeling, Jet Propulsion Laboratory, California Institute of Technology, 2003, Evaluation Number 14, JPL Publ. 02-25.Google Scholar
  19. Solomon, S. and Crutzen, P., Analysis of the August 1972 solar proton event including chlorine chemistry, J. Geophys. Res., 1981, vol. 86, no. C2, pp. 1140–1146.CrossRefGoogle Scholar
  20. Turco, R.P. and Whitten, R.C., A comparison of several computational techniques for solving some common aeronomic problems, J. Geophys. Res., 1974, vol. 79, no. 22, pp. 3179–3185.CrossRefGoogle Scholar
  21. Usoskin, I.G., Kovaltsov, G.A., Mironova, I.A., Tylka, A.J., and Dietrich, W.F., Ionization effect of solar particle GLE events in low and middle atmosphere, Atmos. Chem. Phys., 2011, vol. 11. doi 10.5194/acp-11-1979-2011Google Scholar
  22. Vitt, F.M. and Jackman, C.H., A comparison of sources of odd nitrogen production from 1974 through 1993 in the Earth’s middle atmosphere as calculated using a twodimensional model, J. Geophys. Res., 1996, vol. 101, no. D3, pp. 6729–6739.CrossRefGoogle Scholar
  23. Wissing, J.M. and Kallenrode, M.-B., Atmospheric Ionization Module Osnabruck (AIMOS): A 3D model to determine atmospheric ionization by energetic charged particles from different populations, J. Geophys. Res., A06104. doi 10.1029/2008JA013884Google Scholar
  24. Zadorozhny, A.M., Kiktenko, V.N., Kokin, G.A., Chizhov, A.F., and Shtirkov, O.V., Middle atmosphere response to solar proton events of October 1989 using the results of rocket measurements, J. Geophys. Res., 1994, vol. 99, no. D10, pp. 21059–21069.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • A. A. Krivolutsky
    • 1
  • T. Yu. Vyushkova
    • 1
  • I. A. Mironova
    • 2
  1. 1.Central Aerological Observatory of RoshydrometDolgoprudnyRussia
  2. 2.St. Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations