Geomagnetism and Aeronomy

, Volume 57, Issue 1, pp 40–50 | Cite as

Amplitude–frequency characteristics of ion–cyclotron and whistler-mode waves from Van Allen Probes data

  • A. A. Lyubchich
  • A. G. Demekhov
  • E. E. Titova
  • A. G. Yahnin
Article
  • 41 Downloads

Abstract

Using two-hour (from 2300 UT January 25, 2013 to 0100 UT January 26, 2013) measurement data from Van Allen Probes on fluxes of energetic particles, cold plasma density, and magnetic field magnitude, we have calculated the local growth rate of electromagnetic ion–cyclotron and whistler-mode waves for field-aligned propagation. The results of these calculations have been compared with wave spectra observed by the same Van Allen Probe spacecraft. The time intervals when the calculated wave increments are sufficiently large, and the frequency ranges corresponding to the enhancement peak agree with the frequency–time characteristics of observed electromagnetic waves. We have analyzed the influence of variations in the density and ionic composition of cold plasma, fluxes of energetic particles, and their pitch-angle distribution on the wave generation. The ducted propagation of waves plays an important role in their generation during the given event. The chorus VLF emissions observed in this event cannot be explained by kinetic cyclotron instability, and their generation requires much sharper changes (“steps”) for velocity distributions than those measured by energetic particle detectors on Van Allen Probes satellites.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bespalov, P.A. and Trakhtengerts, V.Yu., Al’fvenovskie mazery (Alfvén Masers), Gor’kii: IPF ANSSSR, 1986.Google Scholar
  2. Blake, J.B., Carranza, P.A., Claudepierre, S.G., et al., The magnetic electron ion spectrometer (MagEIS) instruments aboard the Radiation Belt Storm Probes (RBSP) spacecraft, Space Sci. Rev., 2013, vol. 179, nos. 1–4, pp. 383–421. doi 10.1007/s11214-013-9991-8CrossRefGoogle Scholar
  3. Bortnik, J., Thorne, R.M., and Meredith, N.P., The unexpected origin of plasmaspheric hiss from discrete chorus emissions, Nature, 2008, vol. 452, pp. 62–68. doi 10.1038/nature06741CrossRefGoogle Scholar
  4. Chen, L., Bortnik, J., Li, W., Thorne, R.M., and Horne, R.B., Modeling the properties of plasmaspheric hiss: 2. Dependence on the plasma density distribution, J. Geophys. Res., 2012a, vol. 117, A05202. doi 10.1029/2011JA017202Google Scholar
  5. Chen, L., Li, W., Bortnik, J., and Thorne, R.M., Amplification of whistler-mode hiss inside the plasmasphere, Geophys. Res. Lett., 2012b, vol. 39, L08111. doi 10.1029/2012GL051488CrossRefGoogle Scholar
  6. Cornilleau-Wehrlin, N., Solomon, J., Korth, A., and Kremser, G., Experimental study of the relationship between energetic electrons and elf waves observed on board GEOS-A support to quasi-linear theory, J. Geophys. Res., vol. 90, no. 5, pp. 4141–4154. doi 10.1029/JA090iA05p04141Google Scholar
  7. Demekhov, A.G., Recent progress in understanding Pc1 pearl formation, J. Atmos. Sol.–Terr. Phys., 2007, vol. 69, no. 14, pp. 1609–1622.CrossRefGoogle Scholar
  8. Ermakova, E.N., Yahnin, A.G., Yahnina, T.A., Demekhov, A.G., and Kotik, D.S., Sporadic geomagnetic pulsations at frequencies up to 15 Hz in the magnetic storm of November 7–14, 2004: Features of amplitude and polarization spectra and their connection with ion–cyclotron waves in the magnetosphere, Radiophys. Quantum Electron., 2015, vol. 58, no. 8, pp. 547–560.Google Scholar
  9. Funsten, H.O., Skoug, R.M., Guthrie, A.A., et al., Helium, oxygen, proton, and electron (HOPE) mass spectrometer for the radiation belt storm probes mission, Space Sci. Rev., 2013, vol. 179, nos. 1–4, pp. 423–484. doi 10.1007/s11214-013-9968-7Google Scholar
  10. Horne, R.B. and Thorne, R.M., On the preferred source location for the convective amplification of ion cyclotron waves, J. Geophys. Res., 1993, vol. 98, no. A6, pp. 9233–9247.CrossRefGoogle Scholar
  11. Kennel, C.F. and Petschek, H.E., Limit of stably trapped particle fluxes, J. Geophys. Res., 1966, vol. 71, no. 1, pp. 1–28.CrossRefGoogle Scholar
  12. Kletzing, C.A., Kurth, W.S., Acuna, M., et al., The electric and magnetic field instrument suite and integrated studies (EMFISIS) on RBSP, Space Sci. Rev., 2013, vol. 179, no. 1–4, pp. 127–181. doi 10.1007/s11214-013-9993-6CrossRefGoogle Scholar
  13. Kurth, W.S., De Pascuale, S., Faden, J.B., Kletzing, C.A., Hospodarsky, G.B., Thaller, S., and Wygant, J.R., Electron densities inferred from plasma wave spectra obtained by the waves instrument on Van Allen probes, J. Geophys. Res.: Space, 2015, vol. 120, no. 2, pp. 904–914. doi 10.1002/2014JA020857CrossRefGoogle Scholar
  14. Li, W., Thorne, R.M., Bortnik, J., et al., An unusual enhancement of low-frequency plasmaspheric hiss in the outer plasmasphere associated with substorm-injected electrons, Geophys. Res. Lett., 2013, vol. 40, no. 15, pp. 3898–3803. doi 10.1002/grl.50787CrossRefGoogle Scholar
  15. Lubchich, A.A. and Semenova, N.V., Modeling of the electromagnetic ion cyclotron wave generation in the H+–He+ plasma of the inner magnetosphere, J. Atmos. Sol.–Terr. Phys., 2015, vols. 125–126, pp. 21–37. doi 10.1016/j.jastp.2015.02.004CrossRefGoogle Scholar
  16. Manninen, J., Demekhov, A.G., Titova, E.E., Kozlovsky, A.E., and Pasmanik, D.L., Quasiperiodic VLF emissions with short-period modulation and their relationship to whistlers: A case study, J. Geophys. Res.: Space, 2014, vol. 119, pp. 3544–3557. doi 10.1002/2013JA019743CrossRefGoogle Scholar
  17. Mauk, B.H., Helium resonance and dispersion effects on geostationary Alfvén/ion cyclotron waves, J. Geophys. Res., 1982, vol. 87, no. A11, pp. 9107–9119.CrossRefGoogle Scholar
  18. Mazur, V.A. and Potapov, A.S., The evolution of pearls in the earth magnetosphere, Planet. Space Sci., 1983, vol. 31, pp. 859–863.CrossRefGoogle Scholar
  19. Min, K., Liu, K., Bonnell, J., et al., Study of EMIC wave excitation using direction measurements, J. Geophys. Res.: Space, 2015, vol. 120, pp. 2702–2719. doi 10.1002/2014JA020717CrossRefGoogle Scholar
  20. Sheeley, B.W., Moldwin, M.B., Rassoul, H.K., and Anderson, R.R., An empirical plasmasphere and trough density model: CRRES observations, J. Geophys. Res., 2001, vol. 106, no. A11, pp. 25631–25642.CrossRefGoogle Scholar
  21. Titova, E.E., Kozelov, B.V., Demekhov, A.G., Manninen, J., Santolik, O., Kletzing, C.A., and Reeves, G., Identification of the source of quasiperiodic VLF emissions using ground-based and Van Allen Probes satellite observations, Geophys. Res. Lett., 2015, vol. 42, pp. 6137–6145.CrossRefGoogle Scholar
  22. Trakhtengerts, V.Y. and Rycroft, M.J., Whistler Mode and Alfvén Cyclotron Masers in Space, Cambridge University Press, 2008.CrossRefGoogle Scholar
  23. Wygant, J.R., Bonnell, J.W., Goetz, K., et al., The electric field and waves instruments on the radiation belt storm probes mission, Space Sci. Rev., 2013, vol. 179, nos. 1–4, pp. 183–220. doi 10.1007/s11214-013-0013-7CrossRefGoogle Scholar
  24. Yahnina, T.A. and Yahnin, A.G., Comparing the latitudinal distribution of the Pc1 intensity and the position of subauroral proton spots, Geomagn. Aeron. (Engl. Trasl.), 2012, vol. 52, no. 5, pp.624–628.CrossRefGoogle Scholar
  25. Zhang, J.-C., Saikin, A.A., Kistler, L.M., et al., Excitation of EMIC waves detected by the Van Allen Probes on 28 April 2013, Geophys. Res. Lett., 2014, vol. 41, no. 12, pp. 4101–4108. doi 10.1002/2014GL060621CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • A. A. Lyubchich
    • 1
  • A. G. Demekhov
    • 1
    • 2
  • E. E. Titova
    • 1
    • 3
  • A. G. Yahnin
    • 1
  1. 1.Polar Geophysical InstituteRussian Academy of SciencesApatity, MurmanskRussia
  2. 2.Institute of Applied PhysicsRussian Academy of SciencesNizhny NovgorodRussia
  3. 3.Space Research InstituteRussian Academy of SciencesMoscowRussia

Personalised recommendations