Skip to main content
Log in

Meridional circulation in the sun and stars

  • Published:
Geomagnetism and Aeronomy Aims and scope Submit manuscript

Abstract

Mean-field hydrodynamics advanced to clear explanations for the origin and properties of the global meridional flow in stellar convection zones. Qualitative arguments and analysis of basic equations both show that the meridional circulation is driven by non-conservative centrifugal and buoyancy forces and results from a slight disbalance between these two drivers. The deviations from the thermal wind balance are relatively large near the boundaries of convection zones. Accordingly, the meridional flow attains its largest velocities in the boundary layers and decreases inside the convection zone. This picture, however, is neither supported nor dismissed by the conflicting results of recent helioseismic soundings or 3D numerical experiments. The relevant physics of the differential temperature and its possible relation to the solar oblateness are briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Antia, H.M., Basu, S., and Chitre, S.M., Solar rotation rate and its gradients during cycle 23, Astrophys. J., 2008, vol. 681, pp. 680–692.

    Article  Google Scholar 

  • Baklanova, D. and Plachinda, S., Meridional flow velocities on solar-like stars with known activity cycles, Adv. Space Res., 2015, vol. 55, pp. 817–821.

    Article  Google Scholar 

  • Choudhuri, A.R., Schüssler, M., and Dikpati, M., The solar dynamo with meridional circulation, Astron. Astrophys., 1995, vol. 303, pp. L29–L32.

    Google Scholar 

  • Dicke, R.H., Internal rotation of the Sun, Ann. Rev. Astron. Astrophys., 1970, vol. 8, pp. 297–328.

    Article  Google Scholar 

  • Durney, B.R., On the behavior of the angular velocity in the lower part of the solar convection zone, Astrophys. J., 1989, vol. 338, pp. 509–527.

    Article  Google Scholar 

  • Durney, B.R., On a Babcock–Leighton dynamo model with a deep-seated generating layer for the toroidal magnetic field, Sol. Phys., 1995, vol. 160, pp. 213–235.

    Article  Google Scholar 

  • Duvall, T.L., Jefferies, S.M., Harvey, J.W., and Pomerantz, M.A., Time–distance helioseismology, Nature, 1993, vol. 362, pp. 430–432.

    Article  Google Scholar 

  • Einstein, A., Die Ursache der Mäanderbildung der Flußläufe und das sogenannten Beer’schen Gesetzes, Die Naturwissenshaften, 1926, vol. 14, pp. 223–224.

    Article  Google Scholar 

  • Featherstone, N.A. and Miesch, M.S., Meridional circulation in solar and stellar convection zones, Astrophys. J., 2015, vol. 804, id 67.

  • Garaud, P. and Bodenheimer, P., Gyroscopic pumping of large-scale flows in stellar interiors and application to Lithium-deep stars, Astrophys. J., 2010, vol. 719, pp. 313–314.

    Article  Google Scholar 

  • Giles, P.M., Duvall, T.L., Scherrer, P.H., and Bogart, R.S., A subsurface flow of material from the Sun’s equator to its poles, Nature, 1997, vol. 390, pp. 52–54.

    Article  Google Scholar 

  • Gilman, P.A. and Miesch, M.S., Limits to penetration of meridional circulation below the solar convection zone, Astrophys. J., 2004, vol. 611, pp. 568–574.

    Article  Google Scholar 

  • Gough, D.O., Some glimpses from helioseismology at the dynamics of the deep solar interior, Space Sci. Rev., 2015, vol. 196, pp. 15–47.

    Article  Google Scholar 

  • Guerrero, G., Smolarkiewicz, P.K., Kosovichev, A.G., and Mansour, N.N., Differential rotation in solar-like stars from global simulations, Astrophys. J., 2013, vol. 779, id 176.

  • Hathaway, D.H. and Rightmire, L., Variations in the Sun’s meridional flow over a solar cycle, Science, 2010, vol. 327, pp. 1350–1352.

    Article  Google Scholar 

  • Hazra, G., Karak, B.B., and Choudhuri, A.R., Is a one-cell meridional circulation essential for the flux transport solar dynamo? Astrophys. J., 2014, vol. 782, id 93.

  • Jackewicz, J., Serebryanskiy, A., and Kholikov, S., Meridional flow in the solar convection zone. II. Helioseismic inversions of GONG data, Astrophys. J., 2015, vol. 805, id 133.

  • Käpylä, P.J., Mantere, M.J., Guerrero, G., Brandenburg, A., and Chatterjee, P., Reynolds stress and heat flux in spherical shell convection, Astron. Astrophys., 2011, vol. 531, id 162.

  • Karak, B.B. and Choudhuri, A.R., A possible explanation of the Maunder minimum from a flux transport dynamo model, Res. Astron. Astrophys., 2009, vol. 9, no. 9, pp. 953–958.

    Article  Google Scholar 

  • Karak, B.B., Kitchatinov, L.L., and Choudhuri, A.R., A dynamo model of magnetic activity in solar-like stars with different rotational velocities, Astrophys. J., 2014, vol. 791, id 59.

  • Karak, B.B., Käpylä, P.J., Käpylä, M.J., Brandenburg, A., Olspert, N., and Pelt, J., Magnetically controlled stellar differential rotation near the transition from solar to antisolar profiles, Astron. Astrophys., 2015, vol. 576, id A26.

  • Katsova, M.M., Bondar, N.I., and Livshits, M.A., Solartype activity: Epochs of cycle formation, Astron. Rep., 2015, vol. 59, pp. 726–735.

    Article  Google Scholar 

  • Kippenhahn, R., Differential rotation in stars with convective envelopes, Astrophys. J., 1963, vol. 137, pp. 664–678.

    Article  Google Scholar 

  • Kitchatinov, L.L. and Rüdiger, G., Differential rotation in solar-type stars: revisiting the Taylor-number puzzle, Astron. Astrophys., 1995, vol. 299, pp. 446–452.

    Google Scholar 

  • Kitchatinov, L.L. and Rüdiger, G., Differential rotation in the solar convection zone and beneath, Astron. Nachr., 2005, vol. 326, pp. 379–385.

    Article  Google Scholar 

  • Kitchatinov, L.L., Differential rotation of a star induced by meridional circulation, Astron. Rep., 2006, vol. 50, pp. 512–516.

    Article  Google Scholar 

  • Kitchatinov, L.L. and Olemskoy, S.V., Differential rotation of main-sequence dwarfs and its Dynamo efficiency, Mon. Not. R. Astron. Soc., 2011, vol. 411, pp. 1059–1066.

    Article  Google Scholar 

  • Kitchatinov, L.L. and Olemskoy, S.V., Differential rotation of main-sequence dwarfs: Predicting the dependence on surface temperature and rotation rate, Mon. Not. R. Astron. Soc., 2012, vol. 423, pp. 3344–3351.

    Article  Google Scholar 

  • Kitchatinov, L.L., Theory of differential rotation and meridional circulation, in Proceedings of IAU Symposium 294 “Solar and Astrophysical Dynamos and Magnetic Activity”, Kosovichev, A.G., de Gouveia Dal Pino, E., and Yan, Y., Eds., Cambridge Univ. Press, 2013, pp. 399–410.

    Google Scholar 

  • Kitchatinov, L.L. and Olemskoy, S.V., Dynamo saturation in rapidly rotating solar-type stars, Res. Astron. Astrophys., 2015, vol. 15, pp. 1801–1812.

    Article  Google Scholar 

  • Komm, R.W., Howard, R.F., and Harvey, J.W., Meridional flow of small photospheric magnetic features, Sol. Phys., 1993, vol. 147, pp. 207–223.

    Article  Google Scholar 

  • Kuhn, J.R., Bush, R., Emilio, M., and Scholl, I.F., The precise solar shape and its variability, Science, 2012, vol. 337, pp. 1638–1640.

    Article  Google Scholar 

  • Matt, S.P., Do Chao, O., Brown, B.P., and Brun, A.S., Convection and differential rotation properties of G and K stars computed with the ASH code, Astron. Nachr., 2011, vol. 332, pp. 897–907.

    Article  Google Scholar 

  • Miesch, M.S., Brun, A.S., and Toomre, J., Solar differential rotation influenced by latitudinal entropy variations in the tachocline, Astrophys. J., 2006, vol. 641, pp. 618–625.

    Article  Google Scholar 

  • Passos, D., Charbonneau, P., and Miesch, M., Meridional circulation dynamics from 3D magnetohydrodynamic global simulations of solar convection, Astrophys. J., 2015, vol. 800, id L18.

  • Rajaguru, S.P. and Antia, H.M., Meridional circulation in the solar convection zone: Time–distance helioseismic inferences from four years of HMI/SDO observations, Astrophys. J., 2015, vol. 813, id 114.

  • Rast, M.P., Ortiz, A., and Meisner, R.W., Latitudinal variation of the solar photospheric intensity, Astrophys. J., 2008, vol. 673, pp. 1209–1217.

    Article  Google Scholar 

  • Rempel, M., Influence of random fluctuations in the Lambda-effect on meridional flow and differential rotation, Astrophys. J., 2005, vol. 631, pp. 1286–1292.

    Article  Google Scholar 

  • Rüdiger, G., Differential Rotation and Stellar Convection, New York: Gordon and Breach, 1989.

    Google Scholar 

  • Rüdiger, G., Egorov, P., Kitchatinov, L.L., and Küker, M., The eddy heat-flux in rotating turbulent convection, Astron. Astrophys., 2005, vol. 431, pp. 345–352.

    Article  Google Scholar 

  • Rüdiger, G., Kitchatinov, L.L., and Hollerbach, R., Magnetic Processes in Astrophysics, Weinheim: Wiley-VCH, 2013.

    Book  Google Scholar 

  • Shad, A., Timmer, J., and Roth, M., Global helioseismic evidence for a deeply penetrating solar meridional flow consisting of multiple flow cells, Astrophys. J., 2013, vol. 778, id L38.

  • Sheeley, N.R., Jr., Surface evolution of the Sun’s magnetic field: A historical review of the flux-transport mechanism, Living Rev. Sol. Phys., 2005, vol. 2, id 5.

  • Tassoul, J.-L., Stellar Rotation, Cambridge Univ. Press, 2000.

    Book  Google Scholar 

  • Wang, Y.-M., Sheeley, N.R., Jr., and Nash, A.G., A new solar cycle model including meridional circulation, Astrophys. J., 1991, vol. 383, pp. 431–442.

    Article  Google Scholar 

  • Warnecke, J., Käpylä, P.J., Mantere, M.J., and Brandenburg, A., Spoke-like differential rotation in a convective dynamo with a coronal envelope, Astrophys. J., 2013, vol. 778, id 141.

  • Weiss, N.O., Convection and the differential rotation of the Sun, Observatory, 1965, vol. 85, pp. 37–39.

    Google Scholar 

  • Zhao, J. and Kosovichev, A.G., Detection of equatorward meridional flow and evidence of double-cell meridional circulation inside the Sun, Astrophys. J., 2013, vol. 774, id 29.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. L. Kitchatinov.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kitchatinov, L.L. Meridional circulation in the sun and stars. Geomagn. Aeron. 56, 945–951 (2016). https://doi.org/10.1134/S0016793216080107

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016793216080107

Navigation