Skip to main content
Log in

Geomagnetic disturbances and pulsations as a high-latitude response to considerable alternating IMF Variations during the magnetic storm recovery phase (Case study: May 30, 2003)

  • Published:
Geomagnetism and Aeronomy Aims and scope Submit manuscript

Abstract

Features of high-latitude geomagnetic disturbances during the magnetic storm (Dst min =–144 nT) recovery phase were studied based on the observations on the Scandinavian profile of magnetometers (IMAGE). Certain non-typical effects that occur under the conditions of large positive IMF Bz values (about +20–25 nT) and large negative IMF By values (to–20 nT) were revealed. Thus, an intense (about 400 nT) negative bay in the X component of the magnetic field (the polar electrojet, PE) was observed in the dayside sector at geomagnetic latitudes higher than 70°. As the IMF B y reverses its sign from negative to positive, the bay in the X component was replaced by the bay in the Y component. The possible distribution of the fieldaligned currents of the NBZ system was analyzed based on the CHAMP satellite data. The results were compared with the position of the auroral oval (the OVATION model) and the ion and electron flux observations on the DMSP satellite. Analysis of the particle spectra indicated that these spectra correspond to the auroral oval dayside sector crossings by the satellite, i.e., to the dayside projection of the plasma ring surrounding the Earth. Arguments are presented for the assumption that the discussed dayside electrojet (PE) is localized near the polar edge of the dayside auroral oval in a the closed magnetosphere. The features of the spectral and spatial dynamics of intense Pc5 geomagnetic pulsations were studied in this time interval. It was established that the spectrum of high-latitude (higher than ~70°) pulsations does not coincide with the spectrum of fluctuations in the solar wind and IMF. It was shown that Pc5 geomagnetic pulsations can be considered as resonance oscillations at latitudes lower than 70° and apparently reflect fluctuations in turbulent sheets adjacent to the magnetopause (the low-latitude boundary layer, a cusp throat) or in a turbulent magnetosheath at higher latitudes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Afanas’eva, L.T., Raspopov, O.M., and Kiselev, B.V., Spatial and temporal characteristics of Pc5-type geomagnetic pulsations, in Struktura magnitosfernykh, ionosfernykh i avroral’nykh vozmushchenii (The Structure of Magnetospheric, Ionospheric, and Auroral Disturbances), Leningrad: Nauka, 1977, pp. 108–115.

    Google Scholar 

  • Antonova, E.E., Kirpichev, I.P., Vovchenko, V.V., Stepanova, M.V., Riazantseva, M.O., Pulinets, M.S., Ovchinnikov, I.L., and Znatkova, S.S., Characteristics of plasma ring surrounding the Earth at geocentric distances ~7–10 RE and magnetospheric current systems, J. Atmos. Sol.–Terr. Phys., 2013, vol. 99, pp. 85–91. doi 10.1016/jjastp.2012.08.013

    Article  Google Scholar 

  • Antonova, E.E., Kirpichev, I.P., and Stepanova, M.V., Plasma pressure distribution in the surrounding the Earth plasma ring and its role in the magnetospheric dynamics, J. Atmos. Sol.–Terr. Phys., 2014, vols. 115–116, pp. 32–40. doi 10.1016/jjastp.2013.12.005

    Article  Google Scholar 

  • Antonova, E.E., Vorobjev, V.G., Kirpichev, I.P., and Yagodkina, O.I., Comparison of the plasma pressure distributions over the equatorial plane and at low altitudes under magnetically quiet conditions, Geomagn. Aeron. (Engl. Transl.), vol. 54, no. 3, pp. 278–281.

  • Antonova, E.E. and Ovchinnikov, I.L., Magnetostatically equilibrated plasma sheet with developed medium scale turbulence: Structure and implications for substorm dynamics, J. Geophys. Res., 1999, vol. 104, no. A8, p. 917297.

    Google Scholar 

  • Antonova, E.E. and Ovchinnikov, I.L., The model of turbulent plasma sheet during IMF Bz > 0, Adv. Space Res., 2001, vol. 28, no. 12, pp. 1747–1752.

    Article  Google Scholar 

  • Dremukhina, L.A., Levitin, A.E., and Papitashvili, V.O., Analytical representation of IZMEM model for near-real time prediction of electromagnetic weather, J. Atmos. Sol.–Terr. Phys., 1998, vol. 60, pp. 1517–1529.

    Article  Google Scholar 

  • Feldstein, Y.I., Magnetic field variation in nearpole region during magnetically quiet periods and interplanetary magnetic fields, Space Sci. Rev., 1976, vol. 18, pp. 777–861.

    Google Scholar 

  • Feldstein, Y.I., Popov, V.A., Cumnock, J.A., Prigancova, A., Blomberg, L.G., Kozyra, J.U., Tsurutani, B.T., Gromova, L.I., and Levitin, A.E., Auroral electrojets and boundaries of plasma domains in the magnetosphere during magnetically disturbed intervals, Ann. Geophys., 2006, vol. 24, pp. 2243–2276.

    Article  Google Scholar 

  • Huang, C.Y., Craven, J.D., and Frank, L.A., Simultaneous observations of a theta aurora and associated magnetotail plasmas, J. Geophys. Res., 1989, vol. 94, no. A8, pp. 10137–10143.

    Article  Google Scholar 

  • Iijima, T. and Shibaji, T., Global characteristics of northward IMF-associated (NBZ) field-aligned currents, J. Geophys. Res., 1987, vol. 92, no. A3, pp. 2408–2424.

    Article  Google Scholar 

  • Iijima, T., Potemra, T.A., Zanetti, L.J., and Bythrow, P.F., Large-scale Birkeland currents in the dayside polar region during strongly northward IMF: A new Birkeland current system, J. Geophys. Res., 1998, vol. 103, pp. 26271–26283.

    Article  Google Scholar 

  • Iwasaki, N., Localized abnormal geomagnetic disturbance near the geomagnetic pole and simultaneous ionospheric variation, Rep. Ionos. Space Res. Jpn., 1971, vol. 25, pp. 163–186.

    Google Scholar 

  • Kamide, Y., Burch, J.L., Winningham, J.D., and Akasofu, S.I., Dependence of the latitude of the cleft on the interplanetary magnetic field and substorm activity, J. Geophys. Res., 1976, vol. 81, no. 4, pp. 698–704.

    Article  Google Scholar 

  • Kauristie, K., Uspensky, M.V., Kleimenova, N.G., Kozyreva, O.V., Dubyagin, S.V., and Vlasov, A.A., Isolated nighttime substorms and morning geomagnetic Pc5 pulsations from ground-based and satellite (THEMIS) observations, Geomagn. Aeron. (Engl. Transl.), 2013, vol. 53, no. 5, pp. 613–625.

    Article  Google Scholar 

  • Kleimenova, N.G. and Kozyreva, O.V., Intense Pc5 geomagnetic pulsations during the recovery phase of the superstorms in October and November 2003, Geomagn. Aeron. (Engl. Transl.), 2005, vol. 45, no. 5, pp. 562–576.

    Google Scholar 

  • Kleimenova, N.G., Bol’shakova, O.V., Troitskaya, V.A., and Friis-Kristensen, E., Two types of long-period geomagnetic pulsations near the equatorial boundary of the daytime polar cusp, Geomagn. Aeron., 1985, vol. 25, no. 1, pp. 163–164.

    Google Scholar 

  • Kleimenova, N.G., Kozyreva, O.V., Manninen, J., and Ranta, A., Unusual strong quasi-monochromatic ground geomagnetic Pc5 pulsations in the recovery phase of November 2003 superstorm, Ann. Geophys., 2005, vol. 23, pp. 2621–2634.

    Article  Google Scholar 

  • Kleimenova, N.G. and Kozyreva, O.V., Daytime quasiperiodic geomagnetic pulsations during the recovery phase of the strong magnetic storm of May 15, 2005, Geomagn. Aeron. (Engl. Transl.), 2007, vol. 47, no. 5, pp. 580–587.

    Article  Google Scholar 

  • Kleimenova, N.G. and Kozyreva, O.V., The recovery phase of the superstrong magnetic storm of July 15–17, 2000: Substorms and ULF pulsations, Geomagn. Aeron. (Engl. Transl.), 2009, vol. 49, no. 3, pp. 303–316.

    Article  Google Scholar 

  • Kleimenova, N.G., Gromova, L.I., Dremukhina, L.A., Levitin, A.E., Zelinskii, N.R., and Gromov, S.V., High-latitude geomagnetic effects of the main phase of the geomagnetic storm of November 24, 2001 with the northern direction of IMF, Geomagn. Aeron. (Engl. Transl.), 2015, vol. 55, no. 2, pp. 174–184.

    Article  Google Scholar 

  • Levitin, A.E., Gromova, L.I., Gromov, S.V., and Dremukhina, L.A., How to reorganize the calculation of geomagnetic activity, Proc. of the 36th Annual Seminar “Physics of Auroral Phenomena”, 2013, pp. 41–44.

    Google Scholar 

  • Levitin, A.E., Gromova, L.I., Gromov, S.V., and Dremukhina, L.A., Quantitative estimation of local geomagnetic activity relative to the level of the magnetically quiet period in 2009, Geomagn. Aeron. (Engl. Transl.), 2014, vol. 54, no. 3, pp. 292–299.

    Article  Google Scholar 

  • Lukianova, R. and Christiansen, F., Modeling of the global distribution of ionospheric electric fields based on realistic maps of field-aligned currents, J. Geophys. Res., 2006, vol. 111, A03213. doi 10.1029/2006JA011950

    Google Scholar 

  • Meng, C.-I., Polar cap variation in the midday auroral oval, Dynamics of the Magnetosphere, New York, 1979, pp. 23–31.

    Google Scholar 

  • Mishin, V.M., Bazarzhapov, A.D., Anistratenko, A.A., and Aksenova, L.V., Electric currents and magnetospheric convection produced by nonmagnetized solar wind, Geomagn. Aeron., 1978, vol. 18, no. 4, pp. 751–753.

    Google Scholar 

  • Newell, P.T. and Meng, C.-I., Mapping the dayside ionosphere to the magnetosphere according to particle precipitation characteristics, Geophys. Res. Lett., 1992, vol. 19, no. 6, pp. 609–612.

    Article  Google Scholar 

  • Newell, P.T. and Meng, C.-I., Ionospheric projections of magnetospheric regions under low and high solar wind pressure conditions, J. Geophys. Res., 1994, vol. 99, no. A1, pp. 273–286.

    Article  Google Scholar 

  • Papitashvili, V.O., Christiansen, F., and Neubert, T., A new model of field-aligned currents derived from high precision satellite magnetic field data, Geophys. Res. Lett., 2002, vol. 29, no. 14, pp. 1683–1686.

    Article  Google Scholar 

  • Posch, J.L., Engebretson, M.J., Pilipenko, V.A., Hughes, W.J., Russel, C.T., and Lanzerotti, L.J., Characterizing the long-period ULF response to magnetic storms, J. Geophys. Res., 2003, vol. 108, no. A1. doi 10.1029/ 2002JA009386

  • Rossolenko, S.S., Antonova, E.E., Ermolaev, Yu.I., et al., Turbulent fluctuations of plasma and magnetic field parameters in the magnetosheath and the low-latitude boundary layer formation: Multisatellite observations on March 2, 1996, Cosmic Res., 2008, vol. 46, no. 5, pp. 373–382.

    Article  Google Scholar 

  • Sarris, T.E., Li, X., Liu, W., Argyriadis, E., Boudouridis, A., and Ergun, R., Mode number calculations of ULF field-line resonances using ground magnetometers and THEMIS measurements, J. Geophys. Res.: Space Physics, 2013, vol. 118, pp. 6986–6997. doi 10.1002/ 2012JA018307

    Article  Google Scholar 

  • Savin, S., Amata, E., Budaev, V., et al., On nonlinear cascades and resonances in the outer magnetosphere, Pis’ma Zh. Eksp. Teor. Fiz., 2014, vol. 99, no. 1, pp. 19–24.

    Google Scholar 

  • Savin, S.P., Zelenyi, L.M., Romanovong, S.A., et al., Turbulentnyi pogranichnyi sloi na granitse geomagnitnoi lovushki, Pis’ma Zh. Eksp. Teor. Fiz., 2001, vol. 74, no. 11, pp. 620–624.

    Google Scholar 

  • Shinohara, I. and Kokubun, S., Statistical properties of particle precipitation in the polar cap during intervals of northward interplanetary magnetic field, J. Geophys. Res., 1996, vol. 101, no. A1, pp. 69–82.

    Article  Google Scholar 

  • Starkov, G.V., Rezhenov, B.V., Vorob’ev, V.G., Fel’dshtein, Ya.I., and Gromova, L.I., Dayside auroral precipitation structure, Geomagn. Aeron. (Engl. Transl.), 2002, vol. 42, no. 2, pp. 176–183.

    Google Scholar 

  • Troitskaya, V.A., Bolshakova, O.V., and Matveeva, E.T., Geomagnetic pulsations in the polar cap, J. Geomagn. Geoelectr., 1980, vol. 32, pp. 309–324.

    Article  Google Scholar 

  • Troitskaya, V.A., Mel’nikova, M.V., Bol’shakova, O.V., Rokityanskaya, D.A., and Bulatova, G.A., Fine structure of magnetic storms, Izv. Akad. Nauk SSSR, Fiz. Zemli, 1965, no. 6, pp. 82–86.

    Google Scholar 

  • Troshichev, O.A. and Tsyganenko, N.A., Correlation between parameters of the interplanetary geomagnetic field and geomagnetic variations in polar caps, Geomagn. Issled., 1978, no. 25, pp. 47–59.

    Google Scholar 

  • Troshichev, O.A., Gizler, V.A., and Shirochkov, A.V., Fieldaligned currents and magnetic disturbances in the dayside polar region, Planet. Space Sci., 1982, vol. 30, no. 10, pp. 1033–1042.

    Article  Google Scholar 

  • Troshichev, O.A., Global dynamics of the magnetosphere under northward IMF conditions, J. Atmos. Terr. Phys., 1990, vol. 52, no. 12, pp. 1135–1154.

    Article  Google Scholar 

  • Vorobjev, V.G. and Yagodkina, O.I., Effect of magnetic activity on the global distribution of auroral precipitation zones, Geomagn. Aeron. (Engl. Transl.), 2005, vol. 45, no. 4, pp. 438–444.

    Google Scholar 

  • Vorobjev, V.G. and Yagodkina, O.I., Comparative characteristics of ion and electron precipitation in the dawn and dusk sectors, Geomagn. Aeron. (Engl. Transl.), 2014, vol. 54, no. 1, pp. 50–58.

    Article  Google Scholar 

  • Wilhjelm, J., Friis-Christensen, E., and Potemra, T.A., The relationship between ionospheric and field-aligned currents in the dayside cusp, J. Geophys. Res., 1978, vol. 83, no. A12, pp. 5586–5594.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. G. Kleimenova.

Additional information

Original Russian Text © A.E. Levitin, N.G. Kleimenova, L.I. Gromova, E.E. Antonova, L.A. Dremukhina, N.R. Zelinsky, S.V. Gromov, L.M. Malysheva, 2015, published in Geomagnetizm i Aeronomiya, 2015, Vol. 55, No. 6, pp. 755–768.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Levitin, A.E., Kleimenova, N.G., Gromova, L.I. et al. Geomagnetic disturbances and pulsations as a high-latitude response to considerable alternating IMF Variations during the magnetic storm recovery phase (Case study: May 30, 2003). Geomagn. Aeron. 55, 730–743 (2015). https://doi.org/10.1134/S0016793215060092

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016793215060092

Keywords

Navigation