Skip to main content
Log in

Features of the planetary distribution of ion precipitation at different levels of magnetic activity

  • Published:
Geomagnetism and Aeronomy Aims and scope Submit manuscript

Abstract

Observations from DMSP F6 and F7 spacecraft were used to examine the features of the planetary distribution of ion precipitation. Ion characteristics were defined within the boundaries of different types of auroral electron precipitation, which in accordance with the conclusions from (Starkov et al., 2002) were divided into a structured precipitation of an auroral oval (AOP) and zones of diffuse precipitation DAZ and SDP located equatorward and poleward of AOP, respectively. Analogous to electron precipitation, ion precipitation did not demonstrate dependences of the average energy and the average energy flux of precipitating particles on the Dst index value. In the diffuse precipitation zone (DAZ) equatorward of the auroral oval, ion energies clearly peaked in the sector of 1500–1800 MLT. The average energy value grows as magnetic activity increases from ~12 keV at AL =–1000 nT to ~18 keV at AL =–1000 nT. In the region of structured precipitation (AOP), the minimum of the average ion energy is observed in the dawn sector of 0600–0900 MLT. Ion energy fluxes (F i ) are maximal in the nighttime MLT sectors. In the zone of soft diffuse precipitation (SDP) poleward of AOP, the highest ion energy fluxes are observed in the daytime sector, while the nightside F i values are insignificant. Ion energy fluxes in the SDP zone show an anticorrelation with the average ion energy in the same MLT sector. An ion precipitation model was created which yields a global distribution of both the average ion energies and the ion energy fluxes depending on the magnetic activity expressed by AL and Dst indices. Comparison of this model with the model of electron precipitation shows that the planetary power of ion precipitation at low magnetic activity (|AL| = 100 nT) is ~12% of the electron precipitation power and exponentially decreases to ~4% at |AL| > 1000 nT. The ion precipitation model was used to calculate the plasma pressure at the ionospheric altitudes. The planetary distribution of integral ionospheric conductance depending on the magnetic activity was calculated by using both electron and ion precipitation models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Antonova, E.E., Kirpichev, I.P., and Stepanova, M.V., Plasma pressure distribution in the surrounding the Earth’s plasma ring and its role in the magnetospheric dynamics, J. Atmos. Sol.-Terr. Phys., 2014, vol. 115, pp. 32–40. doi: 10.1016/j.jstp.2013.05.007

    Article  Google Scholar 

  • Antonova, E.E., Ermakova, N.O., Stepanova, M.V., and Teltsov, M.V., The influence of the energetic tails of ion distribution function on the main parameter of the theory of field-aligned current splitting and IntercosmosBulgaria-1300 observations, Adv. Space Res., 2003, vol. 31, no. 5, pp. 1229–1234.

    Article  Google Scholar 

  • Antonova, E.E., Vorob’ev, V.G., Kirpichev, I.P., and Yagodkina, O.I., Comparison of the plasma pressure distributions over the equatorial plane and at low altitudes under magnetically quiet conditions, Geomagn. Aeron., 2014, vol. 54, no. 3, pp. 278–281.

    Article  Google Scholar 

  • Baumjohann, W., Paschmann, G., and Cattell, C.A., Average plasma properties in the center plasma sheet, J. Geophys. Res., 1989, vol. 94, no. 6, pp. 6597–6606.

    Article  Google Scholar 

  • Brekke, A. and Moen, J., Observations of high-latitude ionospheric conductances, J. Atmos. Terr. Phys., 1993, vol. 55, nos. 11–12, pp. 1493–1512.

    Article  Google Scholar 

  • Coumans, V., Gerard, J.-C., and Hubert, B., Electron and proton excitation of the FUV aurora: Simultaneous IMAGE and NOAA observations, J. Geophys. Res., vol. 107, no. A11, p. 1347. doi: 10.1029/2001JA009233

  • Coumans, V., Gerard, J.-C., Hubert, B., Meurant, M., and Mende, S.B., Global auroral conductance distribution due to electron and proton precipitation from imageFUV observations, Ann. Geophys., 2004, vol. 22, pp. 1595–1611.

    Article  Google Scholar 

  • Criston, S.P., Williams, D.J., Mitchell, D.J., Huang, C.Y., and Frank, L.A., Spectral characteristics of plasma sheet ion and electron populations during disturbed geomagnetic conditions, J. Geophys. Res., 1991, vol. 96, no. 1, pp. 1–22.

    Article  Google Scholar 

  • Galand, M. and Richmond, A.D., Ionospheric electrical conductances produced by auroral proton precipitation, J. Geophys. Res., 2001, vol. 106, no. A1, pp. 117–125.

    Article  Google Scholar 

  • Galand, M., Fuller-Rowell, T.J., and Codrescu, M.V., Response of the upper atmosphere to auroral protons, J. Geophys. Res., 2001, vol. 106, no. A1, pp. 127–139.

    Article  Google Scholar 

  • Goertz, C.K. and Baumjohann, W., On the thermodynamics of the plasma sheet, J. Geophys. Res., vol. 96, no. A12, pp. 20991–20998. doi: 10.1029/91JA02128

  • Hardy, D.A., Gussenhoven, M.S., and Brautigan, D., A statistic model of auroral ion precipitation, J. Geophys. Res., 1989, vol. 94, no. A1, pp. 370–392.

    Article  Google Scholar 

  • Kirpichev, I.P. and Antonova, E.E., Plasma pressure distribution in the equatorial plane of the Earth’s magnetosphere at geocentric distances of 6–10 RE according to the international THEMIS mission data, Geomagn. Aeron., 2011, vol. 51, no. 4, pp. 450–455.

    Article  Google Scholar 

  • Kistler, L.M., Baumjohann, W., Nagai, T., and Mobius, E., Superposed epoch analysis of pressure and magnetic field configuration changes in the plasma sheet, J. Geophys. Res., 1993, vol. 98, no. A6, pp. 9249–9258.

    Article  Google Scholar 

  • Liou, K., Newell, P.T., Sibeck, D.G., Meng, C.-I., Brittnacher, M., and Parks, G., Observations of IMF and seasonal effects in the location of auroral substorm onset, J. Geophys. Res., 2001, vol. 106, no. A4, pp. 5799–5810.

    Article  Google Scholar 

  • Maltsev, Yu.P., Points of controversy in magnetic storm studying, Space Sci. Rev., 2004, vol. 110, pp. 227–277.

    Article  Google Scholar 

  • Namgaladze, A.A., Korenkov, Y.N., Klimenko, V.V., Karpov, I.V., Suronkin, V.A., and Naumova, N.M., Numerical modeling of the thermosphere–ionosphere–protonoshpere system, J. Atmos. Terr. Phys., 1991, vol. 53, pp. 1113–1124.

    Article  Google Scholar 

  • Namgaladze, A.A., Koren’kov, Yu.N., Klimenko, V.V., Karpov, I.V., Bessarab, F.S., Surotkin, V.A., Glushchenko, T.A., and Naumova, N.M., Global numerical model of the thermosphere, ionosphere, and protonosphere of the Earth, Geomagn. Aeron., 1990, vol. 30, no. 4, pp. 612–619.

    Google Scholar 

  • Newell, P.T., Sotirelis, T., and Wing, S., Diffuse, monoenergetic and broadband aurora: The global precipitation budget, J. Geophys. Res., 2009, vol. 114, no. A9, p. A09207. doi: 10.1029/2009JA014326

    Google Scholar 

  • Newell, P.T., Rouhoniemi, J.M., and Meng, C.-I., Maps of precipitation by source region, binned by IMF, with inertial convection streamlines, J. Geophys. Res., vol. 109, p. A10206. doi: 10.1029/2009JA010499

  • Newell, P.T., Feldstein, Ya.I., Galperin, Yu.I., and Meng, C.-I., Morphology of nighttime precipitation, J. Geophys. Res., 1996, vol. 101, no. A5, pp. 10737–10748. doi

    Article  Google Scholar 

  • Nikolaeva, V.D., Kotikov, A.L., and Sergienko, T.I., Dynamics of field-aligned currents reconstructed by the ground-based and satellite data, Geomagn. Aeron., 2014, vol. 54, no. 5, pp. 549–557.

    Article  Google Scholar 

  • Riazantseva, M.O., Sosnovets, E.N., Teltsov, M.V., and Vlasova, N.A., Geostationary orbit plasma pressure variations according to Gorizont satellite data, Adv. Space Res., 2000, vol. 25, no, 12, pp. 2365–2368. doi: 10.1016/S0273-1177(99)00524-4

    Article  Google Scholar 

  • Robinson, R.M., Vondrak, R.R., Miller, K., Dabbs, K., and Hardy, D., On calculating ionospheric conductances from the flux and energy of precipitating electrons, J. Geophys. Res., 1987, vol. 92, no. 3, pp. 2565–2569.

    Article  Google Scholar 

  • Starkov, G.V., Rezhenov, B.V., Vorob’ev, V.G., Fel’dshtein, Ya.I., and Gromova, L.I., Dayside auroral precipitation structure, Geomagn. Aeron., 2002, vol. 42, no. 2, pp. 176–183.

    Google Scholar 

  • Stepanova, M.V., Antonova, E.E., Bosqued, J.M., Kovrazhkin, R.A., and Aubel, K.R., Asymmetry of auroral electron precipitations and its relationship to the substorm expansion phase onset, J. Geophys. Res., 2002, vol. 107, no. A7. doi: 10.1029/2001JA003503

    Google Scholar 

  • Stepanova, M., Antonova, E.E., and Bosqued, J.-M., Study of plasma pressure distribution in the inner magnetosphere using low-altitude satellites and its importance for the large-scale magnetospheric dynamics, Adv. Space Res., 2006, vol. 38, pp. 1631–1636.

    Article  Google Scholar 

  • Vorob’ev, V.G., Gromova, L.I., Rezhenov, B.V., Starkov, G.V., and Feldshtein, Ya.I., Variations of the boundaries of plasma precipitations and auroral luminosity in the nighttime sector, Geomagn. Aeron., 2000, vol. 40, no. 3, pp. 344–350.

    Google Scholar 

  • Vorobjev, V.G., Yagodkina, O.I., and Katkalov, Y., Auroral precipitation model and its applications to ionospheric and magnetospheric studies, J. Atmos. Sol.-Terr. Phys., 2013a, vol. 102, pp. 157–171. doi: 10.1016/j.jstp.2013.05.007

    Article  Google Scholar 

  • Vorobjev, V.G., Kirillov, A.S., Katkalov, Yu.V., and Yagodkina, O.I., Planetary distribution of the intensity of auroral luminosity obtained using a model of aurora precipitation, Geomagn. Aeron., 2013b, vol. 53, no. 6, pp. 711–715.

    Article  Google Scholar 

  • Vorobjev, V.G. and Yagodkina, O.I., Comparative characteristics of ion and electron precipitation in the dawn and dusk sectors, Geomagn. Aeron., 2014, vol. 54, no. 1, pp. 50–58.

    Article  Google Scholar 

  • Wing, S. and Newell, P.T., Center plasma sheet ion properties as inferred from ionospheric observations, J. Geophys. Res., 1998, vol. 103, no. A4, pp. 6785–6800.

    Article  Google Scholar 

  • Wing, S., Gjerloev, J., Johnson, J.R., and Hoffman, R.A., Substorm plasma sheet ion pressure profile, Geophys. Res. Lett., 2007, vol. 34, p. L16110. doi: 10.1029/2007GL030453

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. G. Vorobjev.

Additional information

Original Russian Text © V.G. Vorobjev, O.I. Yagodkina, E.E. Antonova, 2015, published in Geomagnetizm i Aeronomiya, 2015, Vol. 55, No. 5, pp. 611–622.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vorobjev, V.G., Yagodkina, O.I. & Antonova, E.E. Features of the planetary distribution of ion precipitation at different levels of magnetic activity. Geomagn. Aeron. 55, 585–595 (2015). https://doi.org/10.1134/S0016793215050187

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016793215050187

Keywords

Navigation