Skip to main content
Log in

Increase in the upper atmospheric temperature over tropospheric sources: Analysis of satellite measurements and numerical simulation

  • Published:
Geomagnetism and Aeronomy Aims and scope Submit manuscript

Abstract

Variations in the temperature of the upper atmosphere caused by hurricanes are considered in this work on the basis of UARS satellite measurements. Analysis of the temperature variations shows that the temperature increases by 24–25 K in the mesopause over high-power tropospheric formations. Atmospheric gravity waves are considered a possible means of transferring disturbances from the Earth’s lower to the upper atmosphere. The maximal amplitude of atmospheric gravity waves was detected at altitudes of about 90 km during numerical simulation of propagation of the waves in a nonisothermal windless atmosphere with an accounting for the viscosity and thermal conductivity. A key factor of their attenuation and propagation is the altitudinal temperature gradient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akhmedov, R.R., Numerical simulation of generation of acoustic gravity waves and ionospheric disturbances from ground-based and atmospheric sources, Extended Abstract of Cand. Sci. (Phys.–Math.) Dissertation, Moscow: MGU, 2004.

    Google Scholar 

  • Artu, J., Ducic, V., Kanamori, H., Lognonne, P., and Murakami, M., Ionospheric detection of gravity waves induced by tsunami, Geophys. J. Int., 2005, 160, pp. 840–848.

    Article  Google Scholar 

  • Drobzheva, Ya.V. and Krasnov, V.M., The acoustic field in the atmosphere and ionosphere caused by a point explosion on the ground, J. Atmos. Sol.-Terr. Phys., 2003, 65, no. 3, pp. 369–377.

    Article  Google Scholar 

  • Dzubenko, M.I. and Kozak, L.V., Aurora activity depression after near seismic shocks, Proc. Intern. Symp. “From Solar Corona through Interplanetary Space, into Earth’s Magnetosphere and Groundbased Observations”, Kyiv, 2000, pp. 129–131.

    Google Scholar 

  • Dzyubenko, N.I., Ivchenko, V.N., and Kozak, L.V., “Temperature variations in the thermosphere over the earthquake focuses as inferred from satellite data,” Geomagn. Aeron. (Engl. Transl.), 2003, 43, no. 1, pp. 118–122.

    Google Scholar 

  • Fishkova, L.M. and Toroshelidze, T.I., Manifestation of seismic activity in nightglow variations, Polyarnye siyaniya i svechenie nochnogo neba (Polar Auroras and Nightglows), Moscow: Nauka, 1989, 33, pp. 17–23.

    Google Scholar 

  • Francis, S.H., Acoustic-gravity modes and large-scale trav-eling ionospheric disturbances of a realistic, dissipative atmosphere, J. Geophys. Res., 1973, 78, no. 13, pp. 2278–2301.

    Article  Google Scholar 

  • Francis, S.H., Global propagation of atmospheric gravity waves: A review, J. Atmos. Terr. Phys., 1975, 37, nos. 6–7, pp. 1011–1054.

    Article  Google Scholar 

  • Gavrilov, N.M., Propagation of internal gravity waves in a stratified atmosphere, Izv. Akad. Nauk SSSR, Fiz. Atmos. Okeana, 1985, 21, pp. 921–927.

    Google Scholar 

  • Gavrilov, N.M. and Yudin, V.A., Numerical study of the vertical structure of internal gravity waves from tropospheric sources, Izv. Akad. Nauk SSSR, Fiz. Atmos. Okeana, 1986, 22, no. 6, pp. 563–572.

    Google Scholar 

  • Gavrilov, N.M., Internal gravity waves and their effect on the middle atmosphere and ionosphere, Extended Abstracts of Doctoral (Phys.–Math.) Dissertation, Leningrad: LGU, 1988.

    Google Scholar 

  • Gavrilov, N.M. and Koval’, A.V., “Parameterization of mesoscale stationary orographic wave forcing for use in numerical models of atmospheric dynamics, Izv., Atmos. Ocean. Phys., 2013, 49, no. 3, pp. 271–278.

    Article  Google Scholar 

  • Gossard, E. and Hooke, W., Waves in the Atmosphere, Elsevier Scientific Pub. Co., 1975.

    Google Scholar 

  • Grigor’ev, G.I., Acoustic gravity waves in the Earth’s atmosphere (Review), Izv. Vyssh. Uchebn. Zaved., Radiofiz., 1999, 42, no. 1, pp. 3–25.

    Google Scholar 

  • Hedin, A.E., Extension of the MSIS Thermospheric Model into the middle and lower atmosphere, J. Geophys. Res., 1991, 96, no. A2, pp. 1159–1172.

    Article  Google Scholar 

  • Hocking, W.K., Turbulence in the altitude region 80–120 km, Adv. Space Res., 1990, 10, no. 12, pp. 153–161.

    Article  Google Scholar 

  • Hodges, R.R., Eddy diffusion coefficients due to instabilities in internal gravity waves, J. Geophys. Res., 1969, 74, no. 16, pp. 4087–4090.

    Article  Google Scholar 

  • Imamura, T. and Ogawa, T., Radiative damping of gravity waves in the terrestrial planetary atmospheres, Geophys. Rev. Lett., 1995, 22, no. 3, pp. 267–270.

    Article  Google Scholar 

  • Kashcheev, B.L. and Oleinikov, A.N., “Spatiotemporal structure of internal gravity waves in the mesopause-lower thermosphere region as inferred from meteor radar observations, Geomagn. Aeron. (Engl. Transl.), 2001, 41, no. 3, pp. 370–375.

    Google Scholar 

  • Kazimirovskii, E.S. and Kokourov, V.D., Dvizheniya v ionosfere (Motions in the Ionosphere), Novosibirsk: Nauka, 1979.

    Google Scholar 

  • Hines, C.O., Termosfernaya tsirkulyatsiya (Circulation in the Thermosphere), Moscow: Mir, 1975.

    Google Scholar 

  • Kozak, L.V., Zmina turbulentnikh protsesiv u nizhnii termosferi pri prokhodzhenni vnutrishnikh gravitatsiinikh khvil', Kosmichna Nauka Tekhnologiya, 2002, 8, no. 5/6, pp. 86–90.

    Google Scholar 

  • Kozak, L.V., Dzubenko, M.I., and Ivchenko, V.M., Temperature and thermosphere dynamics behavior analysis over earthquake epicentres from satellite measurements, Phys. Chem. Earth. Parts A, 2004, 29, nos. 4–9, pp. 507–515.

    Article  Google Scholar 

  • Kunitsyn, V.E., Suraev, S.N., and Akhmetov, R.R., Modeling of atmospheric propagation of acoustic gravity waves generated by different surface sources, Mosc. Univ. Phys. Bull., 2007, 62, no. 2, pp. 122–125.

    Article  Google Scholar 

  • Larkina, V.I., Nalivaiko, A.V., Gershenzon, N.I., Liperovskii, V.A., Gokhberg, M.B., and Shalimov, S.L., Interkosmos-19 satellite observations of VLF radiation connected with seismic activity, Geomagn. Aeron., 1983, 23, no. 5, pp. 842–846.

    Google Scholar 

  • Liperovskii, V.A., Pokhotelov, O.A., and Shalimov, S.L., Ionosfernye predvestniki zemletryasenii (Ionospheric Precursors of Earthquakes), Moscow: Nauka, 1992.

    Google Scholar 

  • Midgley, J.E. and Liemohn, H.B., Gravity waves in a realistic atmosphere, J. Geophys. Res., 1966, 71, no. 15, pp. 3729–3730.

    Article  Google Scholar 

  • Pitteway, M. and Hines, C., The viscous damping of atmospheric gravity waves, Can. J. Phys., 1963, 41, no. 12, pp. 1935–1948.

    Article  Google Scholar 

  • Rapoport, Yu.G., Gotynyan, O.E., Ivchenko, V.M., Kozak, L.V., and Parrot, M., Effect of acoustic-gravity wave of the lithospheric origin on the ionospheric F region before earthquakes, Phys. Chem. Earth. Parts A, 2004, 29, nos. 4–9, pp. 607–616.

    Article  Google Scholar 

  • Reber, C.A., Trevathan, C.E., McNeal, R.J., and Luther, M.R., The upper atmosphere research satellite (UARS) mission, J. Geophys. Res., 1993, 98, no. D6, pp. 10643–10647.

    Article  Google Scholar 

  • Shefov, N.N., Semenov, A.I., Pertsev, N.N., Sukhodoev, V.A., and Perminov, V.I., Spatial distribution of IGW energy inflow into the mesopause over the lee of a mountain ridge, Geomagn. Aeron. (Engl. Transl.), 1999, 39, no. 5, pp. 620–627.

    Google Scholar 

  • Shepherd, G. Thuillier, Gault, W.A., Solheim, B.H., et al., WINDII—the wind imaging interferometer on the upper atmosphere research satellite, J. Geophys. Res., 1993, 98, no. D6, pp. 10725–10750.

    Article  Google Scholar 

  • Sukhodoev, V.A., Perminov, V.I., Reshetov, L.M., Shefov, N.N., Yarov, V.N., Smirnov, A.S., and Nesterova, T.N., Orographic effect in the upper atmosphere, Izv. Akad. Nauk SSSR, Fiz. Atmos. Okeana, 1989, 25, no. 9, pp. 926–932.

    Google Scholar 

  • Sukhodoev, V.A. and Yarov, V.N., Temperature variations of the mesopause in the leeward region of the Caucasus Ridge, Geomagn. Aeron. (Engl. Transl.), 1998, 38, no. 4, pp. 545–548.

    Google Scholar 

  • Suraev, S.N., Numerical simulation of acoustic-gravity wave propagation in the upper atmosphere generated by different surface sources, Extended Abstracts Cand. Sci. (Phys.-Math.) Dissertation, Moscow: MGU, 2007.

    Google Scholar 

  • Volland, H., The upper atmosphere as a multiply refractive medium for neutral air motions, J. Atmos. Terr. Phys., 1969, 31, no. 14, pp. 491–514.

    Article  Google Scholar 

  • Zhang, S.D. and Yi, F., A numerical study of propagation characteristics of gravity wave packets propagating in a dissipative atmosphere, J. Geophys. Res., 2002, 107, no. D14, pp. 1–9.

    Google Scholar 

  • Zhou, XueLong, Holton, J.R., and Gretchen, L., Mullendore Forcing of secondary waves by breaking of gravity waves in the mesosphere, J. Geophys. Res., 2002, 107, no. D7, pp. 4058–4064.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. V. Kozak.

Additional information

Original Russian Text © L.V. Kozak, S.G. Pilipenko, O.A. Motsyk, 2015, published in Geomagnetizm i Aeronomiya, 2015, Vol. 55, No. 5, pp. 687–695.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kozak, L.V., Pilipenko, S.G. & Motsyk, O.A. Increase in the upper atmospheric temperature over tropospheric sources: Analysis of satellite measurements and numerical simulation. Geomagn. Aeron. 55, 670–678 (2015). https://doi.org/10.1134/S0016793215050096

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016793215050096

Keywords

Navigation