Geomagnetism and Aeronomy

, Volume 55, Issue 4, pp 521–538 | Cite as

Physical bases of the generation of short-term earthquake precursors: A complex model of ionization-induced geophysical processes in the lithosphere-atmosphere-ionosphere-magnetosphere system

  • S. A. Pulinets
  • D. P. Ouzounov
  • A. V. Karelin
  • D. V. Davidenko
Article

Abstract

This paper describes the current understanding of the interaction between geospheres from a complex set of physical and chemical processes under the influence of ionization. The sources of ionization involve the Earth’s natural radioactivity and its intensification before earthquakes in seismically active regions, anthropogenic radioactivity caused by nuclear weapon testing and accidents in nuclear power plants and radioactive waste storage, the impact of galactic and solar cosmic rays, and active geophysical experiments using artificial ionization equipment. This approach treats the environment as an open complex system with dissipation, where inherent processes can be considered in the framework of the synergistic approach. We demonstrate the synergy between the evolution of thermal and electromagnetic anomalies in the Earth’s atmosphere, ionosphere, and magnetosphere. This makes it possible to determine the direction of the interaction process, which is especially important in applications related to short-term earthquake prediction. That is why the emphasis in this study is on the processes proceeding the final stage of earthquake preparation; the effects of other ionization sources are used to demonstrate that the model is versatile and broadly applicable in geophysics.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akopyan, S.Ts., Quantitative description of seismic processes based on seismic entropy, Izv., Phys. Solid Earth, 1998, vol. 34, no. 1, pp. 8–22.Google Scholar
  2. Anagnostopoulos, G.C., Vassiliadis, E., and Pulinets, S., Characteristics of flux-time profiles, temporal evolution, and spatial distribution of radiation-belt electron precipitation bursts in the upper ionosphere before great and giant earthquakes, Ann. Geophys., 2012, vol. 55, no. 1, pp. 21–36. doi 10.4401/ag-5365 Google Scholar
  3. Astafyeva, E.I. and Afraimovich, E.L., Long-distance traveling ionospheric disturbances caused by the great Sumatra-Andaman earthquake on 26 December 2004, Earth, Planets Space, 2006, vol. 58, no. 8, pp. 1025–1031.CrossRefGoogle Scholar
  4. Bondur, V.G., Pulinets, S.A., and Kim, G.A., Role of variations in galactic cosmic rays in tropical cyclogenesis: Evidence of Hurricane Katrina, DAN. Geofizika, vol. 422, no. 7, pp. 1124–1129.Google Scholar
  5. Bonfanti, P., Genzano, N., Heinicke, J., Italiano, F., Martinelli, G., Pergola, N., Telesca, L., and Tramutoli, V., Evidence of CO2-gas emission variations in the central Apennines (Italy) during the L’Aquila seismic sequence (March-April 2009), Boll. Geofis. Teor. Appl., 2012, vol. 53, no. 1, pp. 147–168.Google Scholar
  6. Boyarchuk, K.A., Karelin, A.V., and Shirokov, R.V., Bazovaya model’ kinetiki ionizirovannoi atmosfery (The Reference Model of Ionized Atmospheric Kinetics), Moscow: VNIIEM, 2006.Google Scholar
  7. Chernogor, L.F., Fizika i ekologiya katastrof (Physics and Ecology of Catastrophes), Kharkov: V.N. Karazin Kharkov National University, 2012.Google Scholar
  8. Cicerone, R.D., Ebel, J.E., and Britton, J., A systematic compilation of earthquake precursors, Tectonophysics, 2009, vol. 476, no. 3, pp. 371–396.CrossRefGoogle Scholar
  9. Davidenko, D.V., Diagnostics of ionospheric disturbances over seismically hazardous regions, Extended Abstract of Cand. Sci. (Phys. Math.) Dissertation, Institute of Applied Geophysics, Moscow, 2013.Google Scholar
  10. De Santis, A., Cianchini, G., Qamili, E., and Frepoli, A., The 2009 L’Aquila (Central Italy) seismic sequence as a chaotic process, Tectonophysics, 2010, vol. 496, no. 1, pp. 44–52.CrossRefGoogle Scholar
  11. De Santis, A., Cianchini, G., Favali, P., Beranzoli, L., and Boschi, E., The Gutenberg-Richter law and entropy of earthquakes: Two case studies in Central Italy, Bull. Seismol. Soc. Am., 2011, vol. 101, no. 3, pp. 1386–1395.CrossRefGoogle Scholar
  12. Dobrovolsky, I.P., Zubkov, S.I., and Myachkin, V.I., Estimation of the size of earthquake preparation zones, Pure Appl. Geophys., 1979, vol. 117, no. 5, pp. 1025–1044.CrossRefGoogle Scholar
  13. Dunajecka, M. and Pulinets, S.A., Atmospheric and thermal anomalies observed around the time of strong earthquakes in Mexico, Atmosfera, 2005, vol. 18, no. 4, pp. 233–247.Google Scholar
  14. Eddington, A., The Nature of the Physical World, Cambridge: Cambridge Univ. Press, 1928.Google Scholar
  15. Freund, F., Toward a unified solid state theory for pre-earthquake signals, Acta Geophys., 2010, vol. 58, no. 5, pp. 719–766. doi 10.2478/s11600-009-0066-x CrossRefGoogle Scholar
  16. Galvan, D.A., Komjathy, A., Hickey, M.P., Stephens, P., Snively, J., Tony Song, Y., Butala, M.D., and Mannucci, A.J., Ionospheric signatures of Tohoku-Oki tsunami of March 11, 2011: Model comparisons near the epicenter, Radio Sci., 2012, vol. 47, no. 4, p. RS4003. doi 10.1029/2012RS005023
  17. Giuliani, G.G., Giuliani, R., Totani, G., Eusani, G., and Totani, F., Radon observations by gamma detectors PM-4 and PM-2 during the seismic period (January-April 2009) in L’Aquila Basin, Abstr. AGU Fall Meeting, December 14–18, 2009, San-Francisco, 2009, vol. 1, p. 03, id #U14A-03.Google Scholar
  18. Gringel, W., Rosen, J.M., and Hoffman, D.J., Electrical structure from 0 up to 30 kilometers, The Earth’s Electrical Environment, Washington D.C.: National Academic Press, 1986, pp. 166–182.Google Scholar
  19. Gringel, W. and Mühleisen, R., Sahara dust concentration in the troposphere over the North Atlantic derived from measurements of air conductivity, Beitr. Phys. Atmos., 1978, vol. 51, no. 2, pp. 121–128.Google Scholar
  20. Hirsikko, A., On formation, growth and concentrations of air ions, Rep. Ser. Aerosol Sci., 2011, no. 125.Google Scholar
  21. Hõrrak, U., Air ion mobility spectrum at a rural area, Abstract of PhD (Geophys.) Dissertation, Univ. of Tartu, 2001, ch. 10: Contribution of air ion mobility classes to air conductivity.Google Scholar
  22. Hõrrak, U., Mirme, A., Salm, J., Tamm, E., and Tammet, H., Air ion measurements as a source of information about atmospheric aerosols, Atmos. Res., 1998, vol. 46, no. 3, pp. 233–242.CrossRefGoogle Scholar
  23. İnan, S., Akgül, T., Seyis, C., Saatčlar, R., Baykut, S., Ergintav, S., and Ba, M., Geochemical monitoring in the Marmara region (NW Turkey): A search for precursors of seismic activity, J. Geophys. Res., vol. 113, no. B03401. doi 10.1029/2007JB005206.2008Google Scholar
  24. Jing, F., Shen, X.H., Kang, C.L., and Xiong, P., Variations of multi-parameter observations in atmosphere related to earthquake, Nat. Hazards Earth Syst. Sci., 2013, vol. 13, no. 1, pp. 27–33.CrossRefGoogle Scholar
  25. Kelley, M., The Earth’s Ionosphere: Plasma Physics and Electrodynamics, San Diego: Academic Press, 2009, ch. 3: Dynamics and Electrodynamics of the Equatorial Zone, pp. 71–129.Google Scholar
  26. Kim, V.P., Hegai, V.V., and Illich-Svitych, P.V., On one possible ionospheric precursor of earthquakes, Izv. Ross. Akad. Nauk, Fiz. Zemli, 1994, vol. 30, pp. 223–226.Google Scholar
  27. Kim, V.P., Pulinets, S.A., and Khegai, V.V., Theoretical model of possible disturbances in the nighttime mid-latitude ionospheric D region over an area of strong-earthquake preparation, Radiophys. Quantum Electron., 2002, vol. 45, no. 4, pp. 262–268.CrossRefGoogle Scholar
  28. Kim, V.P., Liu, J.Y., and Hegai, V.V., Modeling the pre-earthquake electrostatic effect on the F region iono-sphere, Adv. Space Res., 2012, vol. 50, no. 11, pp. 1524–1533.CrossRefGoogle Scholar
  29. Klimenko, M.V., Klimenko, V.V., Zakharenkova, I.E., Pulinets, S.A., Zhao, B., and Tzidilina, M.N., Formation mechanism of great positive TEC disturbances prior to Wenchuan earthquake on May 12, 2008, Adv. Space Res., 2011, vol. 48, no. 3, pp. 488–499.CrossRefGoogle Scholar
  30. Kondepudi, D. and Prigogine, I., Modern Thermodynamics: From Heat Engines to Dissipative Structures, Chichester: Wiley, 1998.Google Scholar
  31. Kuo, C.L., Huba, J.D., Joyce, G., and Lee, L.C., Iono-sphere plasma bubbles and density variations induced by preearthquake rock currents and associated surface charges, J. Geophys. Res., 2011, vol. 116, no. A10, A10317. doi 10.1029/2011JA016628
  32. Kuo, C.L., Lee, L.C., and Huba, J.D., An improved coupling model for the lithosphere–atmosphere–iono-sphere system, J. Geophys. Res.: Space Phys., 2014, vol. 119, no. A4, pp. 3189–3205. doi 10.1002/2013JA019392 CrossRefGoogle Scholar
  33. Laakso, L., Mäkelä, J.M., Pirjola, L., and Kulmala, M., Model studies on ion-induced nucleation in the atmo-sphere, J. Geophys. Res., 2002, vol. 107, no. D20, pp. AAC 5-1–AAC-5-19. doi 10.1029/2002JD002140
  34. Laakso, L., Kulmala, M., and Lehtinen, K.E.J., Effect of condensation rate enhancement factor on 3-nm (diameter) particle formation in binary ion-induced and homo-geneous nucleation, J. Geophys. Res., 2003, vol. 108, no. D18. doi {rs10.1029/2003JD003432 DOI }Google Scholar
  35. Levina, G.V., Moiseev, S.S., and Rutkevich, P.B., Hydro-dynamic alpha-effect in a convective system, Advances in Fluid Mechanics. Nonlinear Instability, Chaos and Turbulence, Debnath, L. and Riahi, D.N., Eds., Southampton, Boston: WIT Press, 2000, pp. 111–162.Google Scholar
  36. Li, K.C., Feng, J., Pan, X., and Chunyan, Q., Application of multi-parameter infrared remote sensing in seismic monitoring, Abstr. Int. Workshop of Earthquake Anomaly Recognition, 18-20 September, 2001, Shenyang, China.Google Scholar
  37. Li, M. and Parrot, M., Statistical analysis of an ionospheric parameter as a base for earthquake prediction, J. Geophys. Res., 2013, vol. 118, no. A6, pp. 3731–3739. doi 10.1002/jgra.50313 CrossRefGoogle Scholar
  38. Liperovsky, V.A., Pokhotelov, O.A., Meister, K.V., and Liperovskaya, E.V., Physical models of coupling in the lithosphere–atmosphere–ionosphere system before earthquakes, Geomagn. Aeron. (Engl. Transl.), 2008, vol. 48, no. 6, pp. 795–806.CrossRefGoogle Scholar
  39. Liu, J.-Y., Tsai, Y.-B., Ma, K.-F., Chen, Y.-I., Tsai, H.-F., Lin, C.-H., Kamogawa, M., and Lee, C.-P., Iono-spheric GPS total electron content (TEC) disturbances triggered by the 26 December 2004 Indian Ocean tsunami, J. Geophys. Res., 2006, vol. 111, no. A5. doi 10.1029/2005JA011200
  40. Liu, Z., Luo, W., Ding, X., and Chen, W., The new characteristics of ionospheric Total Electron Content (TEC) disturbances prior to four large earthquakes, Abstr. of the 7th Annual Seminar on Spatial Information Science and Technology (ASSIST2011), Hong-Kong, 2011.Google Scholar
  41. Mareev, E.A., Global electric circuit research: Achievements and prospects, Phys.-Usp., 2010, vol. 53, no. 5, pp. 504–511.CrossRefGoogle Scholar
  42. Markson, R., The global circuit intensity: Its measurement and variation over the last 50 years, Bull. Am. Meteorol. Soc., 2007, vol. 88, no. 2, pp. 223–241. doi 10.1175/BAMS-88-2223 CrossRefGoogle Scholar
  43. Martinelli, G., Solecki, A.T., Tchorz-Trzeciakiewicz, D.E., Piekarz, M., and Grudzinska, K.K., Laboratory experiments on radon 222 exposure effects on local environmental temperature: Implications for satellite TIR measurements, Abstr. of the EGU General Assembly, April 27-May 2, 2014, Vienna, Austria, Id. 3175.Google Scholar
  44. Mil’kis, M.R., Meteorological precursors of strong earthquakes, Izv. Akad. Nauk SSSR, Fiz. Zemli, 1986, no. 3, pp. 36–47.Google Scholar
  45. Morozova, L.I., Cloud indicators of the Earth’s crust geodynamics, Izv. Akad. Nauk SSSR, Fiz. Zemli, 1993, no. 10, pp. 108–112.Google Scholar
  46. Morozova, L.I., Sputnikovyi monitoring zemletryasenii (Satellite Monitoring of Earthquakes), Vladivostok: Dal’nauka, 2005.Google Scholar
  47. Namgaladze, A.A., Zolotov, O.V., Karpov, M.I., and Romanovskaya, Y.V., Manifestations of the earthquake preparations in the ionosphere total electron content variations, Nat. Sci., 2012, vol. 4, no. 11, pp. 848–855.Google Scholar
  48. Ouzounov, D., Liu, D., Chunli, K., Cervone, G., Kafatos, M., and Taylor, P., Outgoing longwave radiation variability from IR satellite data prior to major earthquakes, Tectonophysics, 2007, vol. 431, no. 1, pp. 211–220.CrossRefGoogle Scholar
  49. Ouzounov, D., Pulinets, S., Hattori, K., Liu, J.-Y., and Kafatos, M., Validation of atmospheric signals associated with major earthquakes by a synergy of multi-parameter space and ground observations, Abstr. of the Asia-Oceania Geosciences Society 2011 Meeting (AOGS2011), August 8–12, 2011, Taipei, Taiwan, IWG13-A011.Google Scholar
  50. Ouzounov, D., Pulinets, S., Davidenko, D., Hattori, K., Kafatos, M., and Taylor, P., Multi-sensor observations of earthquake-related atmospheric signals over major geohazard validation sites, Abstr. of the AGU 45th Annual Fall Meeting, December 3-7, 2012, San Francisco, CA, United States, NH44A-05.Google Scholar
  51. Papadopoulos, G.A., Real-time seismicity evaluation for operational earthquake forecasting: Recent experiences from Italy and Greece, Lecture at Chapman University, Orange, CA, United States, 2009.Google Scholar
  52. Park, C.G. and Dejnakarintra, M., Penetration of thundercloud electric fields into the ionosphere and magneto-sphere: 1. Middle and subauroral latitudes, J. Geophys. Res., 1973, vol. 78, no. 28, pp. 6623–6633.CrossRefGoogle Scholar
  53. Pergola, N., Aliano, C., Coviello, I., Filizzola, C., Genzano, N., Lacava, T., Lisi, M., Mazzeo, G., and Tramutoli, V., Using RST approach and EOS-MODIS radiances for monitoring seismically active regions: A study on the 6 April 2009 Abruzzo earthquake, Nat. Hazards Earth Syst. Sci., 2010, vol. 10, no. 2, pp. 239–249. doi 10.5194/nhess-10-239-2010 CrossRefGoogle Scholar
  54. Plastino, W., Povinec, P., De Luca, G., Doglioni, C., Nisi, S., Ioannucci, L., Balata, M., Laubenstein, M., Bella, F., and Coccia, E., Uranium groundwater anomalies and L’Aquila earthquake, 6th April 2009 (Italy), J. Environ. Radioact., 2010, vol. 101, no. 1, pp. 45–50.CrossRefGoogle Scholar
  55. Pulinets, S.A., Physical mechanism of the vertical electric field generation over active tectonic faults, Adv. Space Res., 2009, vol. 44, no. 6, pp. 767–773.CrossRefGoogle Scholar
  56. Pulinets, S.A., The synergy of earthquake precursors, Earthquake Sci., 2011a, vol. 24, no. 6, pp. 535–548.CrossRefGoogle Scholar
  57. Pulinets, S., A multi-parameter approach to earthquake forecasting, Exec. Intell. Rev., 2011b, vol. 38, no. 16, pp. 26–35.Google Scholar
  58. Pulinets, S., Low-latitude atmosphere-ionosphere effects initiated by strong earthquakes preparation process, International Journal of Geophysics. Article ID, vol. 2012, p. 2012.Google Scholar
  59. Pulinets, S.A. and Boyarchuk, K.A., Ionospheric Precursors of Earthquakes, Berlin: Springer, 2004.Google Scholar
  60. Pulinets, S. and Davidenko, D., Ionospheric precursors of earthquakes and global electric circuit, Adv. Space Res., 2014, vol. 53, no. 5, pp. 709–723.CrossRefGoogle Scholar
  61. Pulinets, S. and Ouzounov, D., Lithosphere-atmosphere-ionosphere coupling (LAIC) model—a unified concept for earthquake precursors validation, J. Asian Earth Sci., 2011, vol. 41, nos. 4–5, pp. 371–382.CrossRefGoogle Scholar
  62. Pulinets, S.A. and Ouzounov, D., Satellite technologies have no alternative: On the problem of monitoring over natural and technogenic catastrophes, Tr. Inst. Prikl. Geofiz. im. Akad. E. K. Fedorova, 2010, no. 89, pp. 173–185.Google Scholar
  63. Pulinets, S.A., Khegai, V.V., Boyarchuk, K.A., and Lomonosov, A.M., The atmospheric electric field as a source of variability in the ionosphere, Phys.-Usp., 1998, vol. 41, no. 5, pp. 515–523.CrossRefGoogle Scholar
  64. Pulinets, S.A., Boyarchuk, K.A., Hegai, V.V., Kim, V.P., and Lomonosov, A.M., Quasielectrostatic model of atmosphere—thermosphere–ionosphere coupling, Adv. Space Res., 2000, vol. 26, no. 8, pp. 1209–1218.CrossRefGoogle Scholar
  65. Pulinets, S.A., Boyarchuk, K.A., Hegai, V.V., and Karelin, A.V., Conception and model of seismo–iono-sphere–magnetosphere coupling, Seismo-Electromagnetics: Lithosphere-Atmosphere-Ionosphere Coupling, Hayakawa, M. and Molchanov, O.A., Eds., Tokyo: TERRAPUB, 2002, pp. Ð. 353–361.Google Scholar
  66. Pulinets, S.A., Ouzounov, D., Karelin, A.V., Boyarchuk, K.A., and Pokhmelnykh, L.A., The physical nature of the thermal anomalies observed before strong earthquakes, Phys. Chem. Earth, 2006, vol. 31, nos. 4–9, pp. 143–153.CrossRefGoogle Scholar
  67. Pulinets, S., Kafatos, M., Cervone, G., Ouzounov, D., and Singh, R., Energies associated with the Sumatra Earthquakes of December 26, 2004 and March 28, 2005, Abstr. of the EGU 2007 Fall Meeting, San Francisco, United States, 2007, S42–04.Google Scholar
  68. Pulinets, S.A., Ouzounov, D.P., Giuliani, G.G., Ciraolo, L., and Taylor, P.T., Atmosphere and radon activities observed prior to Abruzzo M6.3 earthquake of April 6, 2009, Abstr. of the AGU Fall Meeting, December 14–18, 2009, U14A-07.Google Scholar
  69. Pulinets, S.A., Morozova, L.I., and Yudin, I.A., Synchronization of atmospheric indicators at the last stage of earthquake preparation cycle, Res. Geophys., 2014, vol. 4, no. 1, pp. 45–50.Google Scholar
  70. Pulinets, S.A., Ouzounov, D.P., Davidenko, D.V., Tsadikovskii, E.I., and Dudkin, S.A., Prognoz zemletryasenii vozmozhen?! Integral’nye tekhnologii mnogoparamet-richeskogo monitoringa geoeffektivnykh yavlenii v ramkakh kompleksnoi modeli vzaimosvyazei v litosfere, atmosfere i ionosfere Zemli (Is Earthquake Forecasting Possible? Integral Technologies of Multiparameter Monitoring over Geoeffective Phenomena in the Framework of the Complex Model of the Earth’s Lithosphere-Atmosphere-Ionosphere Coupling), Moscow: Trovant, 2014.Google Scholar
  71. Rozhnoi, A., Solovieva, M., Molchanov, O., Schwingenschuh, K., Boudjada, M., Biagi, P.F., Maggipinto, T., Castellana, L., Ermini, A., and Hayakawa, M., Anomalies in VLF radio signals prior the Abruzzo earthquake (M = 6.3) on 6 April 2009, Nat. Hazards Earth Syst. Sci., 2009, vol. 9, no. 5, pp. 1727–1732.CrossRefGoogle Scholar
  72. Rycroft, M.J., Nicoll, K.A., Aplin, K.L., and Harrison, R.G., Recent advances in global electric circuit coupling between the space environment and the troposphere, J. Atmos. Sol.-Terr. Phys., 2012, vol. 90–91, pp. 198–211.CrossRefGoogle Scholar
  73. Scholz, C.H., Sykes, L.R., and Aggarwal, Y.P., Earthquake prediction: A physical basis, Science, 1973, no. 4102, pp. 803–810.CrossRefGoogle Scholar
  74. Segovia, N., Pulinets, S.A., Leyva, A., Mena, M., Monnin, M., Camacho, M.E., Ponciano, M.G., and Fernandez, V., Ground radon exhalation, an electrostatic contribution for upper atmospheric layers processes, Radiat. Meas., 2005, vol. 40, no. 2–6, pp. 670–672.CrossRefGoogle Scholar
  75. Sekimoto, K. and Takayama, M., Influence of needle voltage on the formation of negative core ions using atmospheric pressure corona discharge in air, Int. J. Mass Spectrom., 2007, vol. 261, no. 1, pp. 38–44.CrossRefGoogle Scholar
  76. Sorokin, V.M., Plasma and electromagnetic effects in the ionosphere related to the dynamics of charged aerosols in the lower atmosphere, Russ. J. Phys. Chem. B, 2007, vol. 1, no. 2, pp. 138–170.CrossRefGoogle Scholar
  77. Spivak, A.A., Bulk activity of subsoil radon in tectonic disturbance areas, Geofizika mezhgeosfernykh vzaimodeistvii (Geophysics of Inter-Geospheric Interactions), Moscow: GEOS, 2008, pp. 235–247.Google Scholar
  78. Stull, R.B., An Introduction to Boundary Layer Meteorology, Dordrecht, Boston, London: Kluwer Academic, 1988.CrossRefGoogle Scholar
  79. Svensmark, H. and Friis-Christensen, E., Variation of cosmic ray flux and global cloud coverage—a missing link in solar—climate relationships, J. Atmos. Sol.-Terr. Phys., 1997, vol. 59, no. 11, pp. 1225–1232.CrossRefGoogle Scholar
  80. Svensmark, H., Pedersen, J.O.P., Marsch, N.D., Enghoff, M.B., and Uggerhøj, U.I., Experimental evidence for the role of ions in particle nucleation under atmospheric conditions, Proc. R. Soc. London, Ser. A, 2007, vol. 463, pp. 385–396.CrossRefGoogle Scholar
  81. Thacker, B.H., Doebling, S.W., Hemez, F.M., Anderson, M.C., Pepin, J.E., and Rodriguez, E.A., Concepts of model verification and validation, Rep. LA-14167-MS, Los-Alamos National Laboratory, 2004.CrossRefGoogle Scholar
  82. Williams, E.R., The global electrical circuit: A review, Atmos. Res., 2009, vol. 91, no. 2–4, pp. 140–152.CrossRefGoogle Scholar
  83. Wilson, C.T.R., Investigations on lightning discharges and on the electric field of thunderstorms, Philos. Trans. R. Soc., A, 1921, vol. 221, pp. 73–115.CrossRefGoogle Scholar
  84. Wu, H.C. and Tikhonov, I.N., Jet streams anomalies as possible short-term precursors of earthquakes with M > 6.0, Res. Geophys., 2014, vol. 4, no. 1, pp. 12–18.CrossRefGoogle Scholar
  85. Yu, F. and Turco, R.P., From molecular clusters to nanoparticles: The role of ambient ionization in tropospheric aerosol formation, J. Geophys. Res., 2001, vol. 106, no. D5, pp. 4797–4814.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • S. A. Pulinets
    • 1
  • D. P. Ouzounov
    • 2
  • A. V. Karelin
    • 3
  • D. V. Davidenko
    • 1
    • 4
  1. 1.Space Research InstituteRussian Academy of SciencesMoscowRussia
  2. 2.Chapman UniversityOrangeUSA
  3. 3.Central Scientific Research Institute of Mechanical EngineeringMoscow RegionRussia
  4. 4.Korolev Rocket-Space Corporation EnergiyaMoscow RegionRussia

Personalised recommendations