Skip to main content
Log in

Variations in the occurrence frequency of Aurora in 1837–1900 from data of the Russian network of meteorological observatories

  • Published:
Geomagnetism and Aeronomy Aims and scope Submit manuscript

Abstract

Observations of auroras in Russia from 1837 to 1900 have been catalogued on the basis of data of the Russian network of meteorological observatories. These observation data from 129 stations in the European and Asian parts of Russia cover a wide geographical zone (ϕ = 39°57′–72°30′ N and λ = 21°1′–224°35′ E). A difference was revealed between the behavior of midlatitude (Φ < 56°) and high-latitude auroras during a solar cycle. A peak in the occurrence frequency of aurora dominates at the cycle maximum in midlatitudes; there is an additional maximum during the declining phase. In contrast, the dominant occurrence frequency peak is observed during the declining phase of a solar cycle or at its minimum for high-latitude auroras. In addition, the occurrence frequency of high-latitude aurora increases in 1837–1900. An upward trend in the occurrence frequency of aurora is also observed at the St. Petersburg observatory (Pavlovsk, Φ = 56°). This trend apparently is evidence of an increase in the open regions of solar magnetic fields in 1837–1900. Some parameters of auroral activity also show a 22-year variation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akasofu, S.-I., The Northern Lights: Secrets of the Aurora Borealis, Portland: Alaska Northwest Books, 2009.

    Google Scholar 

  • Angot, A., The Aurora Borealis, London: K. Paul, Trench, Trubner, 1896.

    Google Scholar 

  • Kupffer, A.T., Ed., Annuaire magnetique et meteorologique du corps des ingenierus des mines de Russie, St.Petersburg: L’Impimerie de A. Jacobson, 1843–1849, Annee 1841–1846.

  • Balmaceda, L., Krivova, N.A., and Solanki, S.K., Reconstruction of solar irradiance using the group sunspot number, Adv. Space Res., 2007, 40, pp. 986–989.

    Article  Google Scholar 

  • Bartels, J., Discussion of time variations of geomagnetic activity, indices Kp and Ap, 1932–1961, Ann. Geophys., 1963, 19, pp. 1–20.

    Google Scholar 

  • Burlaga, L.F., Klein, L., Sheeley, Jr., Michels, D.J., Howard, R.A., Koomen, M.J., Schwenn, R., and Rosenbauer, H., A magnetic cloud and a coronal mass ejection, Geophys. Rev. Lett., 1982, 9, pp. 1317–1320.

    Article  Google Scholar 

  • Chernosky, E.J., Double sunspot-cycle variation in terrestrial magnetic activity, 1884–1963, J. Geophys. Res., 1966, 71, no. 3, pp. 965–974.

    Article  Google Scholar 

  • Despirak, I.V., Lubchich, A.A., Yahnin, A.G., and Kozelov, B.V., The influence of high-speed solar wind streams on the auroral bulge parameters, Proc. XXX Annual Seminar “Physics of Auroral Phenomena”, Apatity, 2007, pp. 21–25.

    Google Scholar 

  • Du, Z.L., The correlation between solar and geomagnetic activity—Part 3: An integral response model, Ann. Geophys., 2011, 29, pp. 1005–1018. doi 10.5194/angeo-29-1005-2011

    Article  Google Scholar 

  • Echer, E., Gonzalez, W.D., Gonzalez, A.L.C., Prestes, A., Vieira, L.E.A., dal Lago, A., Guarnieri, F.L., and Schuch, N.J., Long-term correlation between solar and geomagnetic activity, J. Atmos. Solar. Terr. Phys, 2004, 66, pp. 1019–1025.

    Article  Google Scholar 

  • Feynman, J. and Silverman, S.M., Auroral changes during the 18th and 19th centuries and their implications for the solar wind and the long term variation of sunspot activity, J. Geophys. Res., 1980, 85, pp. 2991–2997.

    Article  Google Scholar 

  • Fritz, H., Verzeichnis der beobachteten Polarlichter, Wien, 1873.

    Google Scholar 

  • Gonzalez, A., Gonzalez, W., and Dutra, S., Periodic variations in the geomagnetic activity: A study based on the Ap index, J. Geophys. Res., 1993, 98, pp. 9215–9231.

    Article  Google Scholar 

  • Gonzalez, W.D., Joselyn, J.A., Kamide, Y., Kroehl, H.W., Rostoker, G., Tsurutani, B.T., and Vasyliunas, V.M., What is a geomagnetic storm?, J. Geophys. Res., 1994, 99, pp. 5771–5792.

    Article  Google Scholar 

  • Green, J.L. and Boardsen, S., Duration and extent of the great auroral storm of 1859, Adv. Space Res., 2006, 38, pp. 130–135. http://izmiran.nw.ru/

    Article  Google Scholar 

  • Krieger, A.S., Timothy, A.F., and Roelof, E.C., A coronal hole and its identification as the source of a high velocity solar wind stream, Sol. Phys., 1973, 23, pp. 123–128.

    Google Scholar 

  • Krivský, L. and Pejml, K., Solar activity, aurorae and climate in central Europe in the last 1000 years, in Travaux de l`Institut Geophysique de l`Academie Tchecoslovaque des Sciences/Publications of the Astronomical Institute of the Czechoslovak Acad. of Sciences, 1985, 33, no. 606, pp. 77–151.

    Google Scholar 

  • Kumamoto, A., Ono, T., Iizima, M., and Oya, H., Control factor of solar cycle variation of auroral kilometric radiation, Adv. Polar Upper Atmos. Res, 2003, 17, pp. 48–59.

    Google Scholar 

  • Legrand, J.P. and Simon, P.A., Solar cycle and geomagnetic activity: A review for geophysicists. I—The contributions to geomagnetic activity of shock waves and of the solar wind, Ann. Geophys., 1989, 7, pp. 565–578.

    Google Scholar 

  • Kupffer A., Ed., Letopisi Glavnoi Fizicheskoi Observatorii (Chronicles of the Main Geophysical Observatory), Saint Petersburg: Izd. Yakobsona A., 1852-1855, for 1849–1852

  • Vil’d, G., Ed., Saint Petersburg: Tipografiya Imperatorskoi AN, for 1865–1900.

  • Libin, I.Ya., Peres, P.Kh., Yanke, V.G., Dorman, L.I., and Treiger, E.M., Helioclimatology: Space sources of the Earth’s climate, Usp. Sovr. Estestvoznaniya, 2012, no. 7, pp. 67–70.

    Google Scholar 

  • Lockwood, M., Stamper, R., and Wild, M.N., A doubling of the Sun’s coronal magnetic field during the past 100 years, Nature, 1999, 399, no. 6735, pp. 437–439.

    Article  Google Scholar 

  • Lockwood, M., Wild, M.N., and Clark, T.D.G., Solar causes of the long-term increase in geomagnetic activity, J. Geophys. Res., 1999, 104, pp. 28325–28342.

    Article  Google Scholar 

  • Lockwood, M., Whiter, D., Hancock, B., Henwood, R., Ulich, T., Linthe, H.J., Clarke, E., and Clilverd, M., The long-term drift in geomagnetic activity: calibration of the aa index using data from a variety of magnetometer stations, Rutherford Appleton Lab (RAL), Harwell Oxford, UK, 2006.

    Google Scholar 

  • Lockwood, M., Reconstruction and prediction of variations in the open solar magnetic flux and interplanetary conditions, Living Rev. Solar Phys., 2013, 10, p. 4.

    Article  Google Scholar 

  • Lockwood, M., Nevanlinna, H., Barnard, L., Owens, M.J., Harrison, R.G., Rouillard, A.P., and Scott, C.J., Reconstruction of geomagnetic activity and near-Earth interplanetary conditions over the past 167 year—Part 4: Near-Earth solar wind speed, IMF, and open solar flux, Ann. Geophys., 2014, 32, pp. 383–399.

    Article  Google Scholar 

  • Loomis, E., Comparison of the mean daily range of the magnetic declination and the number of auroras observed each year, with the extent of the black spots on the surface of the Sun, Amer. J. Sci. Ser. 3, 1873, 5, pp. 245–260.

    Article  Google Scholar 

  • Love, J.J., Solar trends in storm-level geomagnetic activity, Ann. Geophys., 2011, 209, pp. 251–262.

    Article  Google Scholar 

  • Mayaud, P.-N., The aa indices: A 100-year series characterizing the magnetic activity, J. Geophys. Res., 1972, 77, pp. 6870–6874.

    Article  Google Scholar 

  • Nagovitsyn, Yu.A., Nagovitsyna, E.Yu., and Makarova, V.V., The Gnevyshev–Ohl rule for physical parameters of the solar magnetic field: The 400-year interval, Astron. Lett., 2009, 35, no. 8, pp. 564–571.

    Article  Google Scholar 

  • Ol’, A.I., Vysokoshirotnye geofizicheskie yavleniya (HighLatitude Geophysical Pehomena), Leningrad: Nauka, 1974.

    Google Scholar 

  • Ptitsyna, N.G., Tyasto, M.I., and Khrapov, B.A., Great geomagnetic storms in 1841–1870 according to the data from the network of Russian geomagnetic observatories, Geomagn. Aeron. (Engl. Transl.), 2012, 52, no. 5, pp. 613–623.

    Article  Google Scholar 

  • Ptitsyna, N.G., Demina, I.M., Tyasto, M.I., and Khrapov, B.A., Secular variations in the geomagnetic field in St. Petersburg and the adjacent area from historical data, 1630–1930, Geomagn. Aeron. (Engl. Transl.), 2013, 53, no. 5, pp. 642–649.

    Article  Google Scholar 

  • Pudovkin, M.I., Solar wind, Soros Educational J., 1996, no. 12, pp. 87–94.

    Google Scholar 

  • Sarrgent, H.H., The 27-day recurrence index, in Solar Wind-Magnetosphere Coupling, Kamide, Y., and Slavin, J.A., Eds., Japan: Terra, 1986, pp. 143–154.

    Chapter  Google Scholar 

  • Scafetta, N., A shared frequency set between the historical mid-latitude aurora records and the global surface temperature, J. Atmos. Sol.-Terr. Phys, 2012, 74, pp. 145–163.

    Article  Google Scholar 

  • Scafetta, N. and Willson, R.C., Planetary harmonics in the historical Hungarian aurora record (1523–1960), Planet. Space Sci., 2013, 78, pp. 38–44.

    Article  Google Scholar 

  • Schwabe, H., Sonnen-beobachten im Jahre 1843, Astron. Nachrichten. B, 1844, pp. 233–237.

    Google Scholar 

  • Silverman, S.M., Secular variation of the aurora for the past 500 years, Rev. Geophys., 1992, 30, no. 4, pp. 333–351.

    Article  Google Scholar 

  • Silverman, S.M. and Cliver, E.W., Low-latitude auroras: The magnetic storm of 14–15 May 1921, J. Atmos. Sol.Terr. Phys, 2001, 63, pp. 523–535.

    Article  Google Scholar 

  • Simon, P.A. and Legrand, J.P., Solar cycle and geomagnetic activity: A review for geophysicists. Part II.The solar sources of geomagnetic activity and their links with sunspot cycle activity, Ann. Geophys., 1989, 7, pp. 579–594.

    Google Scholar 

  • Siscoe, G.L., Evidence in the auroral record for secular solar variability, Rev. Geophys. Space Phys., 1980, 18, no. 3, pp. 647–658.

    Article  Google Scholar 

  • Svalgaard, L., Correction of errors in scale values for magnetic elements for Helsinki, Ann. Geophys., 2014, 32, pp. 633–641. doi 10.5194/angeo-32-633-2014

    Article  Google Scholar 

  • Svalgaard, L., Cliver, E.W., Interhourly variability index of geomagnetic activity and its use in deriving the longterm variation of solar wind speed, J. Geophys. Res., 2007, 112, p. A10111.

    Article  Google Scholar 

  • Svalgaard, L. and Cliver, E.W., The IDV index: Its derivation and use in inferring long-term variations of the interplanetary magnetic field strength, J. Geophys. Res., 2005, 110, p. A12103.

    Article  Google Scholar 

  • Svod nablyudenii, proizvedennykh v Glavnoi Fizicheskoi i podchinennykh ei observatoriyakh pod ruk. Akad. Kupfera A. (Collection of Observations Carried out at the Main Physical and Related Observatories under the Guidance of Academician Kupffer A.), Sankt Peterburg: Izd. Yakobsona A., 1851, 1855–1865, for 1848, 1853001862.

  • Tromholt, S., Catalog in der Norwegen bis Juni 1878 beobachteten Nordlichter, Schroeter, J. Fr., Ed., Kristiania, 1902.

  • Tromholt, S., Om nordlysets perioderi, in Meteorologiske Arbog for 1880, Copenhagen: Danske Meteorologiske Istitut, 1881, p. I–LX.

    Google Scholar 

  • Tsurutani, B.T., Gonzalez, W.D., Tong, F., and Tu Lee, Y., Great magnetic storms, Geophys. Rev. Lett., 1992, 19, pp. 73–76.

    Article  Google Scholar 

  • Tsurutani, B., Gonzalez, W., Gonzalez, A.L.C., Guarnieri, F., and Gopalswamy, N., Corotating solar wind streams and recurrent geomagnetic activity: A review, J. Geophys. Res., 2006, 111, p. A07S01.

    Google Scholar 

  • Tyasto, M.I., Ptitsyna, N.G., Veselovskii, I.S., and Yakovchuk, O.S., Extremely strong geomagnetic storm of September 2–3, 1859, according to the archived data of observations at the Russian network, Geomagn. Aeron. (Engl. Trans.), 2009, 49, no. 2, pp. 153–162.

    Article  Google Scholar 

  • Val’chuk, T.E., Livshits, M.A., and Fel’dshtein, Ya.B., Sounding of high-latitude solar magnetic fields with the geomagnetic field, Pis’ma Astronom. Zh.,, 1978, 4, no. 2, pp. 515–519.

    Google Scholar 

  • Vaquero, J.M., Gallego, M.C., and Castro, F.D., A possible case of sporadic aurora in 1843 from Mexico, Geofis. Int, 2013, 52, no. 1.

    Google Scholar 

  • Vasquez, M., Vaquero, J.M., and Gallego, M.C., Longterm spatial and temporal variations of aurora borealis events in the period 1700–1905, Solar Phys., 2014, 289, no. 5, pp. 1843–1861.

    Article  Google Scholar 

  • Verbanac, G., Vrsnak, B., Zivkovic, S., Hojsak, T., Veronig, A.M., and Temmer, M., Solar wind highspeed streams and related geomagnetic activity in the declining phase of solar cycle 23, Astron. Astrophys., 2011, 533, p. A49.

    Article  Google Scholar 

  • Webb, D.F., Crooker, N.U., Plunkett, S.P., and St. Cyr, O.C., The solar sources of geoeffective structures, in Space Weather: Progress and Challenges in Research and Applications, Song, P., Siscoe, G. and Singer, H.J., Eds., Washington, D.C.: AGU, 2001, p. 123.

    Google Scholar 

  • Willis, D.M., Vaquero, J.M., and Stephenson, F.R., Early observation of the aurora australis: AD 1640, Astron. Geophys., 2009, 50, no. 5, pp. 5.20–5.24.

    Google Scholar 

  • Zaretskii, N.S., Some regularities of a 22-year cycle of geomagnetic activity, in Byul. NTI. Problemy Kosmofiziki i aeronomii (Bull. Scientific-Research Information), Yakutsk: YaD SBAS USSR, 1980, pp. 22–23.

    Google Scholar 

  • Zaretskii, N.S. and Ivanova, R.G., Relations between some solar-wind parameters for epochs with different polarity of the common heliomagnetic field, in Byul. NTI. Problemy Kosmofiziki i aeronomii (Bull. ScientificResearch Information), Yakutsk: YaD SBAS USSR, 1981, pp. 13–15.

    Google Scholar 

  • Zosimovich, I.D., Geomagnitnaya aktivnost' i ustoichivost' korpuskulyarnogo polya Solntsa (Geomagnetic Activity and Solar Corpuscular Field Stability), Moscow: Nauka, 1981.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. G. Ptitsyna.

Additional information

Original Russian Text © N.G. Ptitsyna, M.I. Tyasto, B.A. Khrapov, 2015, published in Geomagnetizm i Aeronomiya, 2015, Vol. 55, No. 5, pp. 696–705.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ptitsyna, N.G., Tyasto, M.I. & Khrapov, B.A. Variations in the occurrence frequency of Aurora in 1837–1900 from data of the Russian network of meteorological observatories. Geomagn. Aeron. 55, 679–687 (2015). https://doi.org/10.1134/S001679321504012X

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S001679321504012X

Keywords

Navigation