Skip to main content
Log in

Models of wave perturbations of the night emission of the molecular oxygen atmospheric (0,0) band

  • Published:
Geomagnetism and Aeronomy Aims and scope Submit manuscript

Abstract

In order to plan experiments to determine the characteristics of atmospheric IGWs with the use of space-borne IR photoreceivers and to interpret their results, it is necessary to understand the effects accompanying IGW passage through atmospheric emission layers. For this purpose, two model problems are solved in this work. (i) In the framework of the mesoscale hydrodynamic model of the atmosphere, values were obtained for wave perturbations of night emission in the O2 atmospheric (0,0) band that are created by an instantaneous tropospheric point thermal source have. (ii) Based on the zone-averaged global circulation model of the middle atmosphere, the latitude-seasonal distribution of the nonlinear addition to the background zenith intensity of the same emission has been calculated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alexander, M.J., Gille, J., Cavanaugh, C., et al., Global estimates of gravity wave momentum flux from High-Resolution Dynamics Limb Sounder (HIRDLS) observations, J. Geophys. Res., 2008, vol. 113, p. D15S18.

    Google Scholar 

  • Armstrong, W.T., Hoppe, U.-P., Shepherd, G.G., and Solheim, B., Observations of gravity wave structure in O2 (0-0) airglow measurements with the UARS-WINDII imager, EOS Trans. AGU, 1995, vol. 76, no. 46, Fall Meet. Suppl., F73.

    Google Scholar 

  • Aumann, H.H., Chanine, M.T., Gautier, C., et al., AIRS/AMSU/HSB on the Aqua mission: design, science objectives, data products, and processing system, IEEE Trans. Geosci. Remote Sens., 2003, vol. 41, no. 2, pp. 253–264.

    Article  Google Scholar 

  • Belyaev, A.N., An emission layer as a gravity wave detector, J. Atmos. Sol.-Terr. Phys., 2009, vol. 71, nos. 17–18, pp. 1974–1981.

    Article  Google Scholar 

  • Belyaev, A.N., Retrieval of the three-dimensional wave structure of gravity waves from multi-position airglow measurements, J. Atmos. Sol.-Terr. Phys., 2013, vols. 95–96, pp. 41–50.

    Article  Google Scholar 

  • Belyaev, A.N., Alpatov, V.V., Blanc, E., and Melnikov, V.E., Space-based observations of O2 A (0,0) band emission near the solar terminator and their interpretation, Adv. Space Res., 2006, vol. 38, no. 11, pp. 2366–2373.

    Article  Google Scholar 

  • Belyaev, A.N. and Moiseenko, K.B., Modeling the impact of the gravity wave source strength on the thermal structure of the middle atmosphere, J. Atmos. Sol.-Terr. Phys., 2006, vol. 68, no. 17, pp. 2026–2041.

    Article  Google Scholar 

  • Clark, T.L., A small-scale dynamic model using a terrainfollowing coordinate transformation, J. Comput. Phys., 1977, vol. 24, no. 2, pp. 186–215.

    Article  Google Scholar 

  • Dewan, E.M., Picard, R.H., O’Neil, R.R., Gardiner, H.A., Gibson, J., Mill, J.D., Richards, E., Kendra, M., and Gallery, W.O., MSX satellite observations of thunderstorm-generated gravity waves in mid-wave infrared images of the upper stratosphere, Geophys. Res. Lett., 1998, vol. 25, no. 7, pp. 939–942.

    Article  Google Scholar 

  • Fetzer, E.J. and Gille, J.C., Gravity wave variances in LIMS temperatures. Part I: Variability and comparison with background winds, J. Atmos. Sci., 1994, vol. 51, no. 17, pp. 2461–2483.

    Article  Google Scholar 

  • Gutman, L.N., Vvedenie v nelineinuyu teoriyu mezometeorologicheskikh protsessov (Introduction to the Nonlinear Theory of Mesometeorological Processes), Leningrad: Gidrometeoizdat, 1969.

    Google Scholar 

  • Hays, P.B., Kafkalidis, J.F., Skinner, W.R., and Roble, G.R., A global view of the molecular oxygen night airglow, J. Geophys. Res., 2003, vol. 108, no. D20, p. 4646.

    Article  Google Scholar 

  • Hundsdorfer, W., Koren, B., van Loon, M., and Verwer, J.G., A positive finite-difference advection scheme, J. Comput. Phys., 1995, vol. 117, no. 1, pp. 35–46.

    Article  Google Scholar 

  • van Leer, B., Upwind-difference methods for aerodynamic problems governed by the Euler equations, in Large-Scale Computations in Fluid Mechanics, Engquist, B.E., Osher, S., Somerville, R.S.J., Eds., American Mathematical Society, 1985, pp. 327–336.

    Google Scholar 

  • Lipps, F.B., On the anelastic approximation for deep convection, J. Atmos. Sci., 1990, vol. 47, no. 14, pp. 1794–1798.

    Article  Google Scholar 

  • Liu, A.Z. and Swenson, G.R., A modeling study of O2 and OH airglow perturbations induced by atmospheric gravity waves J. Geophys. Res., 2003, vol. 108, no. D4, p. 4151.

    Article  Google Scholar 

  • Mende, S.B., Swenson, G.R., Geller, S.P., and Spear, K.A., Topside observation of gravity waves, Geophys. Res. Lett., 1994, vol. 21, no. 21, pp. 2283–2286.

    Article  Google Scholar 

  • Mende, S.B., Frey, H.U., Geller, S.P., and Swenson, G.R., Gravity wave modulated airglow observation from spacecraft, Geophys. Res. Lett., 1998, vol. 25, no. 5, pp. 757–760.

    Article  Google Scholar 

  • Ogura, Y. and Phillips, N.A., Scale analysis of deep and shallow convection in the atmosphere, J. Atmos. Sci., 1962, vol. 19, no. 2, pp. 173–179.

    Article  Google Scholar 

  • Preusse, P., Eidmann, G., Eckermann, S.D., Schaeler, B., Spang, R., and Offermann, D., Indications of convectively generated gravity waves in CRISTA temperatures, Adv. Space Res., 2001, vol. 27, no. 10, pp. 1653–1658.

    Article  Google Scholar 

  • Preusse, P., Dörnbrack, A., Eckermann, S.D., Riese, M., Schaeler, B., Bacmeister, J.T., Broutman, D., and Grossmann, K.U., Space-based measurements of stratospheric mountain waves by CRISTA: 1. Sensitivity, analysis method, and a case study, J. Geophys. Res., 2002, vol. 107, no. D23, p. 8178.

    Article  Google Scholar 

  • Preusse, P., Schaeler, B., Bacmeister, J.T., and Offermann, D., Evidence for gravity waves in CRISTA temperatures, Adv. Space Res., 1999, vol. 24, no. 11, pp. 1601–1604.

    Article  Google Scholar 

  • Preusse, P., Schroeder, S., Hoffmann, L., Ern, M., Friedl-Vallon, F., Ungermann, J., Oelhaf, H., Fisher, H., and Riese, M., New perspectives on gravity wave remote sensing by spaceborne infrared limb imaging, Atmos. Meas. Tech., 2009, vol. 2, pp. 299–311.

    Article  Google Scholar 

  • Prusa, J.M., Smolarkiewicz, P.K., and Garcia, R.R., On the propagation and breaking at high altitudes of gravity waves excited by tropospheric forcing, J. Atmos. Sci., 1996, vol. 53, no. 15, pp. 2186–2216.

    Article  Google Scholar 

  • Wu, D.L., Preusse, P., Eckermann, S.D., Jiang, J.H., Juarez, M.T., Coy, L., and Wang, D.Y., Remote sounding of atmospheric gravity waves with satellite limb and nadir techniques, Adv. Space Res., 2006, vol. 37, pp. 2269–2277.

    Article  Google Scholar 

  • Wu, D.L. and Waters, J.W., Gravity-wave-scale temperature fluctuations seen by the UARS MLS, Geophys. Res. Lett., 1996a, vol. 23, no. 23, pp. 3289–3292.

    Article  Google Scholar 

  • Wu, D.L. and Waters, J.W., Satellite observations of atmospheric variances: a possible indication of gravity waves, Geophys. Res. Lett., 1996b, vol. 23, no. 24, pp. 3631–3634.

    Article  Google Scholar 

  • Yue, J., Nakamura, T., She, C.-Y., Weber, M., Lyons, W., and Li, T., Seasonal and local time variability of ripples from airglow imager observations in US and Japan, Ann. Geophys., 2010, vol. 28, no. 7, pp. 1401–1408.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Poluarshinov.

Additional information

Original Russian Text © M.A. Poluarshinov, A.N. Belyaev, K.B. Moiseenko, S.Sh. Nikolaishvili, 2015, published in Geomagnetizm i Aeronomiya, 2015, Vol. 55, No. 3, pp. 386–396.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Poluarshinov, M.A., Belyaev, A.N., Moiseenko, K.B. et al. Models of wave perturbations of the night emission of the molecular oxygen atmospheric (0,0) band. Geomagn. Aeron. 55, 378–388 (2015). https://doi.org/10.1134/S0016793215030159

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016793215030159

Keywords

Navigation