Skip to main content
Log in

The effect of particles and electromagnetic waves on vortex structures in the atmosphere and the ionosphere

  • Published:
Geomagnetism and Aeronomy Aims and scope Submit manuscript

Abstract

The formation of vortex structures in an inhomogeneous gyrotropic atmosphere was stochastically determined. Atmospheric gyrotropy is induced by the Coriolis force acting as the Earth rotates and the motion of charged particles in the geomagnetic field. Vortices of a plasma nature are observed in the atmosphere. The electric field of such plasma vortices originates within the fields of pressure gradients of a mosaic cell topology upon the ionization of particles. It is shown that waves in a neutral atmosphere, electric fields, and electromagnetic waves affect the stability of vortex structures. Wave signals from anthropogenic sources and smog may stimulate local precipitation upon the passage of a cloud front and weaken or strengthen vortex structures. The plasma vortex may capture charged particles of different masses. The charge separation in plasma vortex structures is driven by the polarization drift at the decay of electric fields. The self-focusing of plasma vortices upon the condensation of moisture in the atmospheric cloud cover leads to an increase in the energy of vortices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aburdzhania, G.D., Samoorganizatsiya nelineinykh vikhrevykh struktur i vikhrevoi turbulentnosti v dispergiruyushchikh sredakh (Self-organization of Nonlinear Vortex Structures and Vortex Turbulence in Dispersive Media), Lominadze, G.D., Ed., Moscow: KomKniga, 2006.

  • Bondur, V.G., Pulinets, S.A., and Kim, G.A., Role of variations in galactic cosmic rays in tropical cyclogenesis: evidence of Hurricane Katrina, Dokl. Earth Sci., 2008, vol. 422, no. 1, pp. 1124–1128.

    Article  Google Scholar 

  • Deirmendjian, D., Electromagnetic Scattering on Spherical Polydispersions, New York: American Elsevier Pub. Co., 1969.

    Google Scholar 

  • Erokhin, N.S., Zol’nikova, N.N., and Mikhailovskaya, L.A., Structural specifics of the atmospheric electric turbulence in the presence of coherent structures, Sbornik trudov mezhdunarodnoi konferentsii MSS-09 “Transformatsiya voln, kogerentnye struktury i turbulentnost’” (Proc. Int. Conf. MSS-09, Moscow, 2009), Erokhin, N.S., Kogan, E.Ya., Balebanov, V.M., Artekha, S.N., Zol’nikova, N.N., and Mikhailovskaya, L.A., Eds., Moscow: Lenand, 2009, pp. 424–479.

    Google Scholar 

  • Erokhin, N.S., Mikhailovskaya, L.A., and Shalimov, S.L., Conditions of the propagation of internal gravity waves through wind structures from the troposphere to the ionosphere, Izv., Atmos. Ocean. Phys., 2013, vol. 49, no. 7, pp. 732–744.

    Article  Google Scholar 

  • Gdalevich, G.L., Gubsky, V.F., Izhovkina, N.I., and Ozerov, V.D., Observation and theory of topside ionospheric plasma inhomogeneities, J. Atmos. Sol.-Terr. Phys., 1998, vol. 60, no. 2, pp. 247–252.

    Article  Google Scholar 

  • Gdalevich, G.L., Izhovkina, N.I., and Ozerov, V.D., Plasma cavern structure in the ionosphere F layer at the geomagnetic equator according to the Kosmos 900 satellite data, Cosmic Res., 2003, vol. 41, no. 6, pp. 561–566.

    Article  Google Scholar 

  • Gdalevich, G.L., Izhovkina, N.I., Ozerov, V.D., Bankov, N., Chapkanov, S., and Todorieva, L., Plasma irregularities in unstable outer ionosphere according to the Intercosmos-Bulgaria-1300 satellite data, Cosmic Res., 2006, vol. 44, no. 5, pp. 419–424.

    Article  Google Scholar 

  • Haerendel, G., Results from barium cloud releases in the ionosphere and magnetosphere, Space Res., 1973, vol. 13, pp. 601–617.

    Google Scholar 

  • Haerendel, G., Bauer, O.H., Cakir, S., Foepple, H., Rieger, E., and Valenzuela, A., Colored bubbles: an experiment for triggering equatorial spread-F, in Proc. Int. Symp. on Active Experiments in Space, Alpbach, 1983, pp. 295–298.

    Google Scholar 

  • Hines, C.O. and Reddy, C.A., On the propagation of atmospheric gravity waves through regions of wind shear, J. Geophys. Res., 1967, vol. 72, no. 3, pp. 1015–1034.

    Article  Google Scholar 

  • Islamov, S., The butterfly effect: how floods are initiated, Nauka Zhizn’, 2013, no. 10, pp. 122–123.

    Google Scholar 

  • Ivanov, K.G. and Kharshiladze, A.F., Dynamics of solar activity and anomalous weather in summer 2010: 1. Sector boundaries: anticyclone formation and destruction, Geomagn. Aeron. (Engl. Transl.), 2011, vol. 51, no. 4, pp. 444–449.

    Article  Google Scholar 

  • Izhovkina, N.I., Prutensky, I.S., Pulinets, S.A., Shutte, N.M., Plokhova, O.A., Klos, Z., and Rotkel, H., Chargedparticle fluxes and electromagnetic radiation in the topside auroral ionosphere inferred from the APEX experimental data, Geomagn. Aeron. (Engl. Transl.), 2000, vol. 40, no. 4, pp. 456–462.

    Google Scholar 

  • Izhovkina, N.I., Interaction between plasma structures in an unstable ionospheric plasma, Geomagn. Aeron. (Engl. Transl.), 2013, vol. 53, no. 3, pp. 329–336.

    Article  Google Scholar 

  • Kelley, M.C. and Livingston, R., Barium cloud striations revisited, J. Geophys. Res.: Space Phys., 2003, vol. 108, no. A1, p. 1044. doi 10.1029/2002JA009412

    Article  Google Scholar 

  • Kuznetsov, G.I. and Izhovkina, N.I., Two models of atmospheric aerosol, Izv. Acad. Sci. USSR, Atmos. Oceanic Phys., 1973, vol. 9, pp. 537–540.

    Google Scholar 

  • Mikhailovskaya, L.A., Erokhin, N.S., Zol’nikova, N.N., and Shkevov, R., Analytical model of regional largescale cyclogenesis with a variable number of crisis events, Sbornik trudov mezhdunarodnoi konferentsii MSS-09 “Transformatsiya voln, kogerentnye struktury i turbulentnost’” (Proc. Int. Conf. MSS-09, Moscow, 2009), Erokhin, N.S., Kogan, E.Ya., Balebanov, V.M., Artekha, S.N., Zol’nikova, N.N., and Mikhailovskaya, L.A., Eds., Moscow: Lenand, 2009, pp. 329–334.

    Google Scholar 

  • Mikhailovskii, A.V., Teoriya plazmennykh neustoichivostei. T. 2. Neustoichivosti neodnorodnoi plazmy (Theory of Plasma Instabilities, vol. 2: Instabilities of Inhomogeneous Plasma), Moscow: Atomizdat, 1977.

    Google Scholar 

  • Moiseev, S.S., Sagdeev, R.Z., Tur, A.V., and Yanovskii, V.V., On the freezing-in integrals and Lagrange invariants in hydrodynamic models, Sov. Phys.-JETP., 1982, vol. 56, no. 1, pp. 117–123.

    Google Scholar 

  • Moiseev, S.S., Sagdeev, R.Z., Tur, A.V., Khomenko, G.A., and Yanovskii, V.V., Theory of the origin of large-scale structures in hydrodynamic turbulence, Sov. Phys.-JETP., 1983, vol. 58, no. 6, pp. 1149–1153.

    Google Scholar 

  • Narcisi, R.S. and Szuszczewicz, E.P., Direct measurements of electron density, temperature and ion composition in an equatorial spread-F ionosphere, J. Atmos. Terr. Phys., 1981, vol. 43, nos. 5–6, pp. 463–471.

    Article  Google Scholar 

  • Nezlin, M.V. and Chernikov, G.P., Analogy between drift vortices in plasma and geophysical hydrodynamics, Plasma Phys. Rep., 1995, vol. 21, pp. 922–944.

    Google Scholar 

  • Roederer, J.G., Dynamics of Geomagnetically Trapped Radiation, New York: Springer, 1970.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. I. Izhovkina.

Additional information

Original Russian Text © N.I. Izhovkina, 2015, published in Geomagnetizm i Aeronomiya, 2015, Vol. 55, No. 3, pp. 350–360.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Izhovkina, N.I. The effect of particles and electromagnetic waves on vortex structures in the atmosphere and the ionosphere. Geomagn. Aeron. 55, 333–343 (2015). https://doi.org/10.1134/S0016793215020073

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016793215020073

Keywords

Navigation