Spectral slope of high-latitude geomagnetic disturbances in the frequency range 1–5 mHz. Control parameters inside and outside the magnetosphere

Abstract

Dependence of the spectral slope of long-period high-latitude Pc5/Pi3(1–5 mHz) geomagnetic variations on parameters of the interplanetary geomagnetic field and plasma in front of the bow shock and in the magnetosheath is analyzed for different intervals of the local magnetic time. It is shown that, contrary to the power spectral density, for which the coherent variations on 103 km scales are controlled by the plasma parameters in front of the bow shock, coherent variations of the spectral slope are controlled by processes in the magnetosheath. The relation between the spectral slope at geomagnetic latitudes Φ > 73° and the parameters of the magnetic field in the magnetosheath was established. Thus, the spectral slope of high latitude disturbances in the 1–5 mHz frequency range reflects processes in the magnetosheath, far from the subsolar point, and cannot be predicted with only an analysis of parameters in the interplanetary media in front of the bow shock.

This is a preview of subscription content, access via your institution.

References

  1. Anderson, B.J., Engebretson, M.J., Rounds, S.P., Zanetti, L.J., and Potemra, T.A., A statistical study of Pc3–5 pulsations observed by the AMPTE/CCE magnetic field experiment, 1, Occurrence distributions, J. Geophys. Res., 1990, vol. 95, no. A7, pp. 10495–10523.

    Article  Google Scholar 

  2. Anderson, B.J., Fuselier, S.A., Gary, S.P., and Denton, R.E., Magnetic spectral signatures in the Earth’s magnetosheath and plasma depletion layer, J. Geophys. Res., 1994, vol. 99, no. A4, pp. 5877–5891, doi:10.1029/93JA02827.

    Article  Google Scholar 

  3. Archer, M.O., Horbury, T.S., and Eastwood, J.P., Magnetosheath pressure pulses: Generation downstream of the bow shock from solar wind discontinuities, J. Geophys. Res., 2012, vol. 117, no. A5, p. A05228, doi:10.1029/2011JA017468.

    Google Scholar 

  4. Ballatore, P., Lanzerotti, L.J., and Maclennan, C.G., Multistation measurements of Pc5 geomagnetic power amplitudes at high latitudes, J. Geophys. Res., 1998, vol. 103, no. A12, pp. 29455–29465.

    Article  Google Scholar 

  5. Born, M. and Wolf, E., Principles of Optics, London-New York-Paris: Pergamon Press, 1964.

    Google Scholar 

  6. Clauer, C.R., Ridley, A.J., Sitar, R.J., Singer, H.J., Rodger, A.S., Friis-Christensen, E., and Papitashvili, V.O., Field line resonant pulsations associated with a strong dayside ionospheric shear convection flow reversal, J. Geophys. Res. 1997, vol. 102, no. A3, pp. 4585–4596.

    Article  Google Scholar 

  7. Coult, N., Pilipenko, V., and Engebretson, M., Suppression of resonant field line oscillations by a turbulent background, Planetary Space Science, 2007, vol. 55, no. 6, pp. 694–700.

    Article  Google Scholar 

  8. Engebretson, M.J., Glassmeier, K.-H., Stellmacher, M., Hughes, W.J., and Lühr, H., The dependence of high-latitude PcS wave power on solar wind velocity and on the phase of high-speed solar wind streams, J. Geophys. Res., 1998, vol. 103, no. A11, pp. 26271–26283.

    Article  Google Scholar 

  9. Engebretson, M.J., Lin, N., Baumjohann, W. Luehr, H., Anderson, B.J., Zanetti, L.J., Potemra, T.A., McPherron, R.L., and Kivelson, M.G., A comparison of ULF fluctuations in the solar wind, magnetosheath, and dayside magnetosphere: 1. Magnetosheath morphology, J. Geophys. Res., 1991, vol. 96, no. A3, pp. 3441–3454, doi:10.1029/90JA02101.

    Article  Google Scholar 

  10. Fowler, R.A., Kotick, B.J., and Elliot, R.D., Polarization analysis of natural and artificially induced geomagnetic micropulsations, J. Geophys. Res., 1967, vol. 72, no. 11, pp. 2871–2883.

    Article  Google Scholar 

  11. Gutynska, O., Safrankova, J., and Nemecek, Z., Correlation length of magnetosheath fluctuations: Cluster statistics, Ann. Geophys., 2008, vol. 26, no. 9, pp. 2503–2513, doi:10.5194/angeo-26-2503-2008.

    Article  Google Scholar 

  12. Gutynska, O., Safrankova, J., and Neecek, Z., Correlation properties of magnetosheath magnetic field fluctuations, J. Geophys. Res., 2009, vol. 114, no. A8, p. A08207, doi:10.1029/2009JA014173.

    Google Scholar 

  13. Hietala, H., Partamies, N., Laitinen, T.V., Clausen, L.B.N., Facskó, G., Vaivads, A., Koskinen, H.E.J., Dandouras, I., Réme, H., and Lucek, E.A., Supermagnetosonic subsolar magnetosheath jets and their effects: from the solar wind to the ionospheric convection, Ann. Geophys., 2012, vol. 30, no. 1, pp. 33–48, doi:10.5194/angeo-30-33-2012.

    Article  Google Scholar 

  14. Kepko, L., Spence, H.E., and Singer, H.J., ULF waves in the solar wind as direct drivers of magnetospheric pulsations, Geophys. Res. Lett., 2002, vol. 29, no. 8, doi: 10.1029/2001GL014405.

    Google Scholar 

  15. Kessel, R.L., Mann, I.R., Fung, S.F. Milling, D.K., and O’Connell, N., Correlation of Pc5 wave power inside and outside the magnetosphere during high speed streams, Ann. Geophys., 2004, vol. 22, no. 2, pp. 629–641, doi:10.5194/angeo-22-629-2004.

    Article  Google Scholar 

  16. Kim, K.-H., Cattell, C.A., Lee, D.-H., Lee, Takahashi, K., Yumoto, K., Shiokawa, K., Mozer, F.S., and Andre, M., Magnetospheric responses to sudden and quasiperiodical solar wind variations, J. Geophys. Res., 2002, vol. 107, no. A11, pp. SMP 36-1–SMP 36-12, doi: 10.1029/2002JA009342.

    Google Scholar 

  17. Korn, G.A. and Korn, T.M., Mathematical Handbook for Scientists and Engineers, New York, San Francisco-Toronto-London-Sydney: McGraw-Hill Book Company, 1968.

    Google Scholar 

  18. Luhmann, J.G., Russell, C.T., and Elphic, R.C., Spatial distributions of magnetic field fluctuations in the dayside magnetosheath, J. Geophys. Res., 1986, vol. 91, no. A2, pp. 1711–1715, doi:10.1029/JA091iA02p01711.

    Article  Google Scholar 

  19. Pilipenko, V.A., Fedorov, E.N., Engebretson, M.J., Papitashvili, V.O., and Watermann, J.F., Poleward progressing quasi-periodic disturbances at cusp latitudes: The role of wave processes, J. Geophys. Res., 2000, vol. 105, no. A12, pp. 27569–27588.

    Article  Google Scholar 

  20. Prikryl, P., MacDougall, J.W., Grant, I.F., Steele, D.P., Sofko, G.J., and Greenwald, R.A., Observations of polar patches generated by solar wind Alfven wave coupling to the dayside magnetopause, Ann. Geophysicae., 1999, vol. 17, no. 4, pp. 463–489.

    Article  Google Scholar 

  21. Samson, J.C., Three-dimensional polarization characteristics of high-latitude Pc5 geomagnetic micropulsations, J. Geophys. Res., 1972, vol. 77, no. 31, pp. 6145–6160.

    Article  Google Scholar 

  22. Schwartz, S.J., Burgess, D., and Moses, J.J., Low-frequency waves in the Earth’s magnetosheath: present status, Ann. Geophys., 1996, vol. 14, no. 11, pp. 1134–1150, doi:10.1007/s00585-996-1134-z.

    Google Scholar 

  23. Shevyrev, N.N., Zastenker, G.N., Nozdrachev, M.N., Nemecek, Z., Safrankova, J., and Richardson, J.D., High and low frequency large amplitude variations of plasma and magnetic field in the magnetosheath: radial profile and some features, Adv. Space Res., 2003, vol. 31, no. 5, pp. 1389–1394.

    Article  Google Scholar 

  24. Takahashi, K. and Anderson, B.J., Distribution of ULF energy (f < 80 mHz) in the inner magnetosphere: A statistical analysis of AMPTE CCE magnetic field data, J. Geophys. Res., 1992, vol. 97, no. A7, pp. 10751–10773.

    Article  Google Scholar 

  25. Takahashi, K. and Ukhorskiy, A.Y., Timing analysis of the relationship between solar wind parameters and geosynchronous Pc5 amplitude, J. Geophys. Res., 2008, vol. 113, no. A12, p. A12204, doi:10.1029/2008JA013327.

    Article  Google Scholar 

  26. Yagodkina, O.I. and Vorobjev, V.G., Daytime high-latitude pulsations associated with solar wind dynamic pressure impulses and flux transfer events, J. Geophys. Res., 1997, vol. 102, no. A1, pp. 57–67, doi:10.1029/96JA01273.

    Article  Google Scholar 

  27. Yagova, N., Lanzerotti, L., Villante, U., Pilipenko, V., Lepidi, S., Francia, P., Papitashvili, V., and Rodger, A., Magnetic activity in the ULF Pc5–6 band at very high latitudes in Antarctica, J. Geophys. Res., 2002, vol. 107, no. A8, pp. SMP 22-1–SMP 22-12, doi:10.1029/2001JA900143.

    Google Scholar 

  28. Yagova, N.V., Pilipenko, V.A., Lanzerotti, L.J., Engebretson, M.J., Rodger, A.S., Lepidi, S., and Papitashvili, V.O., Two-dimensional structure of long-period pulsations at polar latitudes in Antarctica, J. Geophys. Res., 2004, vol. 109, no. A3, p. A03222, doi:10.1029/2003JA010166.

    Google Scholar 

  29. Yagova, N., Pilipenko, V., Watermann, J., and Yumoto, K., Control of high latitude geomagnetic fluctuations by interplanetary parameters: The role of suprathermal ions, Ann. Geophys., 2007, vol. 25, no. 4, pp. 1037–1047.

    Article  Google Scholar 

  30. Yagova, N.V., Pilipenko, V.A., Baransky, L.N., and Engebretson, M.J., Spatial distribution of spectral parameters of high latitude geomagnetic disturbances in the Pc5/Pi3 frequency range, Ann. Geophysicae, 2010, vol. 28, no. 9, pp. 1761–1775.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to N. V. Yagova.

Additional information

Original Russian Text © N.V. Yagova, 2015, published in Geomagnetizm i Aeronomiya, 2015, Vol. 55, No. 1, pp. 35–44.

The article was translated by the authors.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yagova, N.V. Spectral slope of high-latitude geomagnetic disturbances in the frequency range 1–5 mHz. Control parameters inside and outside the magnetosphere. Geomagn. Aeron. 55, 32–40 (2015). https://doi.org/10.1134/S0016793215010144

Download citation

Keywords

  • Solar Wind
  • Solar Wind Velocity
  • Spectral Slope
  • Solar Wind Dynamic Pressure
  • Magnetic Field Parameter