Skip to main content
Log in

The three-dimensional photochemical model CHARM. Incorporation of solar activity

  • Published:
Geomagnetism and Aeronomy Aims and scope Submit manuscript

Abstract

We describe the numerical global photochemical model CHARM (CHemical Atmospheric Research Model) and the results of a numerical simulation of climatological distributions of ozone and other atmospheric trace gases in a height range of up to 90 km. We also present the results of numerical scenarios of an impact induced by a change in UV radiation fluxes in the solar activity cycle and conditioned by ozone depletion in polar regions by high-energy particles of cosmic origin. The spatial transport of chemically active species is described in the model (the Prather scheme) on the basis of global fields of wind components and temperature calculated by the ARM (Atmospheric Research Model) general circulation model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aleksandrov, E.A., Izrael’, Yu.A., Karol’, I.L., and Khrgian, A.Kh., Ozonnyi shchit Zemli i ego izmeneniya (The Ozone Shield of the Earth and Its Changes), St. Petersburg: Gidrometeoizdat, 1992.

    Google Scholar 

  • Balkanski, Y.J., Jakob, D.J., Gardner, G.M., Graustein, W.C., and Turkeian, K.K., Transport and residence times of tropospheric aerosols inferred from a global three-dimensional simulation of 210Pb, J. Geophys. Res., 1993, vol. 98, no. D11, pp. 20573–20586.

    Article  Google Scholar 

  • Brasseur, G. and Solomon, S., Aeronomy of the Middle Atmosphere, Dordrecht: Springer, 2005.

    Google Scholar 

  • Callis, L.B., Natarajan, M., and Lambeth, J.D., Solar-atmospheric coupling by electrons (SOLACE). 3. Comparison of simulations and observations, 1979–1997, issues and implications, J. Geophys. Res., 2001, vol. 106, no. D7, pp. 7523–7539.

    Article  Google Scholar 

  • Chapman, S., A theory of upper atmospheric ozone, Mem. R. Meteorol. Soc., 1930, vol. 3, pp. 103–125.

    Google Scholar 

  • COSPAR International Reference Atmosphere (CIRA). Part III: Trace Constituent Reference Models, Adv. Space Res., 1996, vol. 18, no. 9/10.

    Google Scholar 

  • Fabian, P., Pyle, J.A., and Wells, R.J., The august 1972 solar proton event and the atmospheric ozone layer, Nature, 1979, vol. 277, pp. 458–460.

    Article  Google Scholar 

  • Funke, B., Baumgaertner, A., Calisto, M., et al., Composition changes after the “Halloween” solar proton event: the High Energy Particle Precipitation in the Atmosphere (HEPPA) model versus MIPAS data intercom-parison study, Atmos. Chem. Phys., 2011, vol. 11, pp. 9089–0139. doi 10.5194/acpd-11-9407-2011

    Article  Google Scholar 

  • Galin, V.Ya., Smyshlyaev, S.P., and Volodin, E.M., Combined chemistry-climate model of the atmosphere, Izv., Atmos. Ocean. Phys., 2007, vol. 43, no. 4, pp. 399–412.

    Article  Google Scholar 

  • Garcia, R. and Solomon, S., A numerical model of the zonally averaged and chemical structure of the middle atmosphere, J. Geophys. Res., 1983, vol. 88, no. C2, pp. 1379–1400.

    Article  Google Scholar 

  • Garcia, R.R., Solar surprise?, Nature, 2010, vol. 467, pp. 668–669.

    Article  Google Scholar 

  • Gray, L.J., Beer, J., Geller, M., et al., Solar influences on climate, Rev. Geophys., 2010, vol. 48, RG4001. doi 10.1029/2009RG000282

    Google Scholar 

  • Haigh, J.D., The effect of solar variability on the Earth’s climate, Philos. Trans. R. Soc., 2003, no. A361, pp. 95–111.

    Google Scholar 

  • Jackman, C.H., Rood, R.B., McPeters, R.D., and Meade, P.E., Effect of solar proton events on the middle atmosphere during the past two solar cycles as computed using two-dimensional model, J. Geophys. Res., 1990, vol. 95, pp. 7417–7428. doi 10.1029/ JD095iD06p07417

    Article  Google Scholar 

  • Jackman, C., McPeters, R.D., Labaw, G.J., and Fleming, E.L., Northern Hemisphere atmospheric effects due to the July 2000 solar proton event, Geophys. Res. Lett., 2001, vol. 28, no. 15, pp. 2883–2886.

    Article  Google Scholar 

  • Kotamarthi, V.R., Rodriguez, J.M., Ko, M.K., Tromp, T.K., and Sze, N.D., Trifluoroacetic acid from degradation of HCFCs and HFCs: A three-dimensional modeling study, J. Geophys. Res., 1998, vol. 103, no. D5, pp. 5747–5758.

    Article  Google Scholar 

  • Krivolutsky, A.A., Cherepanova, L.A., Zakharov, G.R., V’yushkova, T.Yu., and Banin, M.V., Scientific and technical report, Central Aerological Observatory, Topic 3.2.1 (Rosgidromet): “Development of a modified version of the general circulation model for heights up to 120 km with a detailed description of processes in the troposphere and a modified radiation module”, 2010.

    Google Scholar 

  • Krivolutsky, A.A. and Cherepanova, L.A., Response of the global fields of temperature and tropospheric wind and the middle atmosphere to variations in the solar UV radiation flow during a solar activity cycle in the presence of planetary waves (3D modeling), Geomagn. Aeron. (Engl. Transl.), 2013, vol. 53, no. 7, p. 871–876.

    Article  Google Scholar 

  • Krivolutsky, A.A., Klyuchnikova, A.V., Zakharov, G.R., Vyushkova, T.Yu., and Kuminov, A.A., Dynamical response of the middle atmosphere to solar proton event of July 2000: Three-dimensional model simulations, Adv. Space Res., 2006, vol. 37, no. 8, pp. 1602–1613.

    Article  Google Scholar 

  • Krivolutsky, A., Kuminov, A., and Vyushkova, T.Yu., Ionization of the atmosphere caused by solar protons and its influence on ozonosphere of the Earth during 1994–2003, J. Atmos. Sol.-Terr. Phys., 2005, vol. 67, nos. 1–2, pp. 105–117.

    Article  Google Scholar 

  • Krivolutsky, A.A., Kuminov, A.A., Kukoleva, A.A., Repnev, A.I., Perejaslova, N.K., and Nazarova, M.N., Solar proton activity during cycle 23 and changes in the ozonosphere: Numerical simulation and analysis of observational data, Geomagn. Aeron. (Engl. Transl.), 2008, vol. 48, no. 4, pp. 432–445.

    Article  Google Scholar 

  • Krivolutsky, A.A. and Repnev, A.I., Vozdeistvie kosmicheskikh faktorov na ozonosferu Zemli (Influence of Cosmic Factors on the Earth’s Ozonosphere), Moscow: GEOS, 2009.

    Google Scholar 

  • Krivolutsky, A.A., V’yushkova, T.Yu., Klyuchnikova, A.V., Kuminov, A.A., and Banin, M.V., Scientific and technical report, Central Aerological Observatory, Topic 1.3.2.15 (Rosgidromet): “Development of a global three-dimensional numerical model of the chemical composition and thermodynamic state of the middle atmosphere”, 2004.

    Google Scholar 

  • Larin, I.K., Khimicheskaya fizika ozonovogo sloya (Chemical Physics of the Ozone Layer), Moscow: GEOS, 2013.

    Google Scholar 

  • Matthew, T. and Cebula, R.P., Solar UV variations during the decline of cycle 23, J. Atmos. Sol.-Terr. Phys., 2012, vol. 77, pp. 225–234. doi 10.1016/j.jastp.2012.01.007

    Article  Google Scholar 

  • Models and Measurements Intercomparison II, NASA/TM-1999-209554, 1999.

  • Porter, H.S., Jackman, C., and Green, A.E.S., Efficiencies for production of atomic nitrogen and oxygen by relativistic proton impact in air, J. Chem. Phys., 1976, vol. 65, pp. 154–167.

    Article  Google Scholar 

  • Prather, M., Numerical advection by conservation of second-order moments, J. Geophys. Res., 1986, vol. 91, no. D6, pp. 6671–6681.

    Article  Google Scholar 

  • Rasch, P.J., Bovile, B.A., and Brasseur, G.P., A three-dimensional general circulation model with coupled chemistry for the middle atmosphere, J. Geophys. Res., 1995, vol. 100, no. D5, pp. 9041–9071.

    Article  Google Scholar 

  • Repnev, A.I. and Krivolutsky, A.A., Variations in the chemical composition of the atmosphere from satellite measurements and their relation to fluxes of energetic particles of cosmic origin (Review), Izv., Atmos. Ocean. Phys., 2010, vol. 46, no. 5, pp. 535–562.

    Article  Google Scholar 

  • Rottman, G., Woods, T., Snow, M., and DeToma, G., The solar cycle variations in ultraviolet irradiance, Adv. Space Res., 2001, vol. 27, no. 12, pp. 1927–1932.

    Article  Google Scholar 

  • Rozanov, E., Schraner, M., Schnadt, C., et al., Assessment of the ozone and temperature variability during 1979–1993 with the chemistry-climate model SOCOL, Adv. Space Res., 2005, vol. 35, pp. 1375–1384.

    Article  Google Scholar 

  • Sander, S.P., Friedl, R.R., Barker, J.R., et al., Chemical Kinetics and Photochemical Data for Use in Atmospheric Modeling, Evaluation Number 17, JPL Publication 10-6, Pasadena: Jet Propulsion Laboratory, California Institute of Technology, 2011.

    Google Scholar 

  • Solomon, S. and Crutzen, P.J., Analysis of the August 1972 solar proton event including chlorine chemistry, J. Geophys. Res., 1981, vol. 86, no. C2, pp. 1140–1151.

    Article  Google Scholar 

  • Soukharev, B.E. and Hood, L.L., Solar cycle variation of stratospheric ozone: Multiple regression analysis of long-term satellite data sets and comparison with models, J. Geophys. Res., 2006, D20314. doi 10.1029/2006JD007107

    Google Scholar 

  • Staniforth, A. and Cote, J., Semi-Lagrangian integration schemes for atmospheric models: A review, Mon. Wea. Rev., 1991, vol. 119, pp. 2209–2223.

    Article  Google Scholar 

  • Swider, W. and Gardner, M.E., On accuracy of certain approximations for the Chapman function, Environmental Research Papers, no. 272, Air Force Cambridge Research, Bedford, MA, 1967.

    Google Scholar 

  • Turco, R.P. and Whitten, R.C., A comparison of several computational techniques for solving some common aeronomic problems, J. Geophys. Res., 1974, vol. 79, no. 22, pp. 317–319.

    Google Scholar 

  • Two-Dimensional Intercomparison of Stratospheric Models, Proc. of a Workshop Held in Virginia Beach, Virginia, September 11–16, 1988, NASA Conference Publication 3042, 1989.

  • Vitt, F.M. and Jackman, C.H., A comparison of sources of odd nitrogen production from 1974 through 1993 in the Earth’s middle atmosphere as calculated using a two-dimensional model, J. Geophys. Res., 1996, vol. 101, no. D3, pp. 6729–6739.

    Article  Google Scholar 

  • Zadorozhny, A.M., Kiktenko, V.N., Kokin, G.A., Chizhov, A.F., and Shtirkov, O.V., Middle atmosphere response to solar proton events of October 1989 using the results of rocket measurements, J. Geophys. Res., 1994, vol. 99, no. D10, pp. 21059–21069.

    Article  Google Scholar 

  • Zadorozhny, A.M. and Magarychev, S.V., A three-dimensional numerical model of the ozonosphere. VINITI, 13.03.85, no. 4437, p. 1985.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Krivolutsky.

Additional information

Original Russian Text © A.A. Krivolutsky, T.Yu. V’yushkova, L.A. Cherepanova, A.A. Kukoleva, A.I. Repnev, M.V. Banin, 2015, published in Geomagnetizm i Aeronomiya, 2015, Vol. 55, No. 1, pp. 64–93.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krivolutsky, A.A., V’yushkova, T.Y., Cherepanova, L.A. et al. The three-dimensional photochemical model CHARM. Incorporation of solar activity. Geomagn. Aeron. 55, 59–88 (2015). https://doi.org/10.1134/S0016793215010077

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016793215010077

Keywords

Navigation