Skip to main content
Log in

Role of the large-scale solar magnetic field structure in the global organization of solar activity

  • Published:
Geomagnetism and Aeronomy Aims and scope Submit manuscript

Abstract

The relation of the large-scale solar magnetic field structure to the most pronounced manifestations of solar activity (filaments, active regions, sunspots, coronal mass ejections, and coronal holes) has been studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Altschuler, M.D., Trotter, D.E., and Orral, F.Q., Coronal holes, Sol. Phys., 1972, vol. 26, p. 354.

    Article  Google Scholar 

  • Arkhypov, O.V., Antonov, O.V., and Khodachenko, M.L., Supergiant complexes of solar activity and convection zone, Sol. Phys., 2011, vol. 270, pp. 1–8.

    Article  Google Scholar 

  • Arkhypov, O.V., Antonov, O.V., and Khodachenko, M.L., Deep convection and solar chromosphere, Sol. Phys., 2012, vol. 278, pp. 285–298.

    Article  Google Scholar 

  • Arkhypov, O.V., Antonov, O.V., and Khodachenko, M.L., Solar activity and deep convection modeling, Sol. Phys., 2013, vol. 282, pp. 39–50.

    Article  Google Scholar 

  • Babcock, H.W., The topology of the Sun’s magnetic field and the 22-year cycle, Astrophys. J., 1961, vol. 133, p. 572.

    Article  Google Scholar 

  • Bromage, B.J.I., Browning, P.K., and Clegg, J.R., A cosmic ray signature of equatorial coronal holes, Space Sci. Rev., 2001, vol. 97, no. 1/4, pp. 13–16.

    Article  Google Scholar 

  • Bumba, V. and Obridko, V.N., Bartels’ active longitudes’, sector boundaries and flare activity, Sol. Phys., 1969, vol. 6, pp. 104–110.

    Article  Google Scholar 

  • Gosling, J.T. and Pizzo, V.J., Formation and evolution of corotating interaction regions and their three dimensional structure, Space Sci. Rev., 1999, vol. 89, no. 1/2, pp. 21–52.

    Article  Google Scholar 

  • Ivanov, E.V., Active longitudes: Structure, dynamics, and rotation, Adv. Space Res., 2007, vol. 40, pp. 959–969.

    Article  Google Scholar 

  • Ivanov, E.V., Role of the large-scale structure of the solar magnetic field in the formation of activity complexes, Trudy Vserossiiskoi konferentsii po fizike Solntsa “Solnechnaya i solnechno-zemnaya fizika 2012” (Proc. All-Russia Conf. on Solar Physics “Solar and Solar-Terrestrial Physics”), St. Petersburg: GAO, 2012, pp. 55–58.

    Google Scholar 

  • Ivanov, E.V., Obridko, V.N., and Shelting, B.D., Large-scale structure of solar magnetic fields and coronal mass ejections, Astron. Rep., 1997, vol. 41, no. 2, pp. 236–239.

    Google Scholar 

  • Leighton, R., A magneto-kinematic model of the solar cycle, Astrophys. J., 1969, vol. 156, p. 1.

    Article  Google Scholar 

  • Luo, B., Zhong, Q., Liu, S., and Gong, J., A new forecasting index for solar wind velocity based on EIT 284 observations, Sol. Phys., 2008, vol. 250, p. 159.

    Article  Google Scholar 

  • Makarov, V.I. and Sivaraman, K.R., Evolution of latitude zonal structure of the large-scale magnetic field in solar cycles, Sol. Phys., 1989a, vol. 119, pp. 35–44.

    Article  Google Scholar 

  • Makarov, V.I. and Sivaraman, K.R., New results concerning the global solar cycle, Sol. Phys., 1989b, vol. 123, pp. 367–380.

    Article  Google Scholar 

  • Makarov, V.I., Tlatov, A.G., Callebaut, D.K., Obridko, V.N., and Shelting, B.D., Large-scale magnetic field and sunspot cycles, Sol. Phys., 2001, vol. 198, pp. 409–421.

    Article  Google Scholar 

  • McComas, D.J., Elliot, H.A., and von Steiger, R., Solar wind from high-latitude coronal holes at solar maximum, Geophys. Res. Lett., 2002, vol. 29, no. 9, p. 28–1.

    Google Scholar 

  • McIntosh, P.S. and Wilson, P.R., A new model for flux emergence and the evolution of sunspots and the large-scale fields, Sol. Phys., 1985, vol. 97, pp. 59–79.

    Article  Google Scholar 

  • Murray, N. and Wilson, P.R., The reversal of the solar polar magnetic fields, Sol. Phys., 1992, vol. 142, pp. 221–232.

    Article  Google Scholar 

  • Nolte, J.T., Krieger, A.S., Timothy, A.F., Gold, R.E., Roelof, E.C., Vaiana, G., Lazarus, A.J., Sullivan, J.D., and McIntosh, P.S., Coronal holes as sources of solar wind, Sol. Phys., 1976, vol. 46, pp. 303–322.

    Article  Google Scholar 

  • Obridko, V.N. and Shelting, B.D., Structure of the heliospheric current sheet derived for the interval 1915–1916, Sol. Phys., 1999, vol. 184, pp. 187–200.

    Article  Google Scholar 

  • Obridko, V.N. and Shelting, B.D., Relationship between the parameters of coronal holes and high-speed solar wind streams over an activity cycle, Sol. Phys., 2011, vol. 270, pp. 297–310.

    Article  Google Scholar 

  • Obridko, V.N., Shelting, B.D., Livshits, I.M., and Asgarov, A.B., Contrast of coronal holes and parameters of associated solar wind streams, Sol. Phys., 2009a, vol. 260, p. 191.

    Article  Google Scholar 

  • Obridko, V.N., Shelting, B.D., Livshits, I.M., and Askerov, A.B., Relationship between the contrast of coronal holes and parameters of the solar wind streams, Astron. Rep., 2009b, no. 11, pp. 1050–1058.

    Google Scholar 

  • Obridko, V.N., Chertoprud, V.E., and Ivanov, E.V., Active longitudes’ in the heliomagnetic reference frame, Sol. Phys., 2011, vol. 272, pp. 59–71.

    Article  Google Scholar 

  • Obridko, V.N., Ivanov, E.V., Özgüç, A., Kilcik, A., and Yurchyshyn, V.B., Coronal mass ejections and the index of effective solar multipole, Sol. Phys., 2012, vol. 1, pp. 779–792.

    Article  Google Scholar 

  • Robbins, S., Henney, C.J., and Harvey, J.W., Solar wind forecasting with coronal holes, Sol. Phys., 2006, vol. 233, pp. 265–276.

    Article  Google Scholar 

  • Shelting, B.D. and Obridko, V.N., Sign reversal during a solar cycle as inferred from the global magnetic field data, Trudy vsesoyuznoi konferentsii “Solntse v epokhu smeny znaka magnitnogo polya” (Proc. All-Russia Conf. “The Sun in the Magnetic Field Sign Reversal Epoch”), St. Petersburg: GAO, 2001, pp. 391–398.

    Google Scholar 

  • Stepanyan, N.N., Akhtemov, Z.S., Fainshtein, V.G., and Rudenko, G.V., Vertical stratification and polarity reversal of solar magnetic field in cycles 21–23, Trudy Vserossiiskoi konferentsii po fizike Solntsa “Solnechnaya i solnechno-zemnaya fizika 2012” (Proc. All-Russia Conf. “Solar and Solar-Terrestrial Physics”), St. Petersburg: GAO, 2012, pp. 129–132.

    Google Scholar 

  • Tavastsherna, K.S. and Polyakov, E.V., Coronal holes, large-scale magnetic field, and activity complexes in cycle 23, “Solnechnaya i solnechno-zemnaya fizika—2013” (Proc. All-Russia Conf. “Solar and Solar-Terrestrial Physics”), St. Petersburg, 2013, pp. 253–256.

    Google Scholar 

  • Veselovskii, I.S., Persiantsev, I.G., Ryazanov, A.Yu., and Shugai, Yu.S., One-parameter representation of the daily averaged solar-wind velocity, Sol. Syst. Res., 2006, vol. 40, no. 5, pp. 427–431.

    Article  Google Scholar 

  • Vršnak, B., Temmer, M., and Veronig, A.M., Coronal holes and solar wind high-speed streams: I. Forecasting the solar wind parameters, Sol. Phys., 2007a, vol. 240, pp. 315–330.

    Article  Google Scholar 

  • Vršnak, B., Temmer, M., and Veronig, A.M., Coronal holes and solar wind high-speed streams: II. Forecasting the geomagnetic effects, Sol. Phys., 2007b, vol. 240, pp. 331–346.

    Article  Google Scholar 

  • Wang, Y.-M., Hawley, S.H., and Sheeley, N.R., The magnetic nature of coronal holes, Science, 1996, vol. 271, no. 5248, pp. 464–469.

    Article  Google Scholar 

  • Wilson, P.R., The reversal of the solar polar magnetic fields, Sol. Phys., 1992, vol. 138, pp. 11–21.

    Article  Google Scholar 

  • Wilson, P.R. and Mclntosh, P.S., The reversal of the solar polar magnetic fields, Sol. Phys., 1991, vol. 136, pp. 221–237.

    Article  Google Scholar 

  • Wilson, P.R., McIntosh, P.S., and Snodgrass, H.B., The reversal of the solar polar magnetic fields, Sol. Phys., 1990, vol. 127, pp. 1–9.

    Article  Google Scholar 

  • Zhang, J., Woch, J., Solanki, S.K., and von Steiger, R., The Sun at solar minimum: North south asymmetry of the polar coronal holes, Geophys. Res. Lett., 2002, vol. 29, no. 8, p. 77–1.

    Google Scholar 

  • Zhang, J. and Woch, J., Solanki, von Steiger, R., and Forsyth, R., Interplanetary and solar surface properties of coronal holes observed during solar maximum, J. Geophys. Res., 2003, vol. 108, p. 1144.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Ivanov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivanov, E.V., Obridko, V.N. Role of the large-scale solar magnetic field structure in the global organization of solar activity. Geomagn. Aeron. 54, 996–999 (2014). https://doi.org/10.1134/S0016793214080076

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016793214080076

Keywords

Navigation