Skip to main content
Log in

Can slow solar shock waves heat the corona?

  • Published:
Geomagnetism and Aeronomy Aims and scope Submit manuscript

Abstract

Based on the solution to a generalized Riemann-Kotchine problem, the appearance of dissipative slow shock waves in the plasma of the solar corona, which occur when rotational discontinuities are refracted at a contact discontinuity in the transition region between the chromosphere and corona, is studied. The oblique interaction between a solar rotational discontinuity A and stationary contact discontinuity C in the transition region is considered in the scope of the magnetohydrodynamic model. Here, due to the presence of a large number of nonlinear Alfvén waves, there is a real possibility of the appearance of a rotational discontinuity moving to the solar corona in the chromosphere. The appearance of dissipative slow MHD shock waves with an insignificant change in the magnetic field as a result of refraction of nondissipative rotational discontinuities at a contact discontinuity in the transition region is proved. It is supposed that a wave source of plasma heating can exist in upper layers of the corona because of the motion of slow shock waves undergoing the Landau damping. Thus, a new model of heat transfer from the chromosphere to the solar corona is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aschwanden, M.J., Coronal MHD waves and oscillations: observations and quests, Phil. Trans. R. Soc., A, 2006, vol. 364, no. 1839, pp. 417–432.

    Article  Google Scholar 

  • Barmin, A.A. and Pushkar’, E.A., Oblique MHD interaction of the rotational discontinuity with the contact disctinuity, Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, 1990, no. 1, pp. 131–142.

    Google Scholar 

  • Barnes, A., Collisionless damping of hydromagnetic waves, Phys. Fluids, 1966, vol. 9, pp. 1483–1495.

    Article  Google Scholar 

  • Borovsky, J.E. and Gary, S.P., Electron-ion Coulomb scattering and the electron Landau damping of Alfvén waves in the solar wind, J. Geophys. Res., 2011, vol. 116, no. A7, p. A07101.

    Google Scholar 

  • Kaplan, S.A., Pikel’ner, S.B., and Tsitovich, V.N., Fizika plazmy solnechnoi atmosfery (Physics of the Solar Atmosphere Plasma), Moscow: Nauka, 1977.

    Google Scholar 

  • Kulikovskii, A.G. and Lyubimov, G.A., Magnitnaya gidrodinamika (Magnetic Hydrodynamics), Moscow: Logos, 2005.

    Google Scholar 

  • Lin, C.C., Tsai, C.L., Cha, H.J., Weng, S.J., et al., A possible generation mechanism of interplanetary rotational discontinuities, J. Geophys. Res.: Space Phys., 2009, vol. 114, no. A8, p. A08102.

    Google Scholar 

  • Malara, F., Alfvén waves in coronal holes: formation of discontinuities in inhomogeneous magnetic fields, Astron. Astrophys., 2013, vol. 549, p. A54.

    Article  Google Scholar 

  • Mariska, J.T., The Solar Transition Region, Cambridge: Cambridge Univ. Press, 1992.

    Google Scholar 

  • Nakariakov, V.M., Zhugzhda, D., and Ulmschneider, P., On the interactions of the longitudinal and transverse waves within magnetic flux tubes, Astron. Astrophys., 1996, vol. 312, no. 2, pp. 691–698.

    Google Scholar 

  • Parker, E.N., Cosmical Magnetic Fields, Oxford: Clarendon, 1979, vol. 1, p. 165.

    Google Scholar 

  • Richter, A.K., Rosenbauer, H., Neubauer, F.M., and Ptitsyna, N.G., Solar wind observations associated with a slow forward shock wave at 0.31 AU, J. Geophys. Res.: Space Phys., 1985, vol. 90, no. A8, pp. 7581–7586.

    Article  Google Scholar 

  • Ryutova, M. and Tarbell, Th., MHD shocks and the origin of the solar transition region, Phys. Rev. Lett., 2003, vol. 90, p. 191101.

    Article  Google Scholar 

  • Tsurutani, B.T., et al., Interplanetary discontinuities and Alfvén waves at high heliographic latitude: Ulysses, J. Geophys. Res.: Space Phys., 1996, vol. 101, no. A5, pp. 11027–11038.

    Article  Google Scholar 

  • Tsurutani, B.T. and Lakhina, F.S., Plasma microstructure in the solar wind, in Proceedings of the International School of Physics “Enrico Fermi,” Societá Italiana de Fisica, 1999, vol. 142, pp. 257–272.

    Google Scholar 

  • Vasquez, B.J. and Hollweg, J.V., Evolution and dissipation of imbedded rotational discontinuities and Alfvén waves in nonuniform plasma and resultant heating, J. Geophys. Res.: Space Phys., 2001, vol. 106, no. A4, pp. 5661–5681.

    Article  Google Scholar 

  • Zaitsev, V.V. and Kislyakova, K.G., Plasma heating under parametric excitation of sound oscillations in coronal magnetic loops, God astronomii: Solnechnaya i solnechno-zemnaya fizika-2009 (Year of Astronomy, Solar and Solar-Terrestrial Physics 2009), St. Petersburg, 2009, pp. 187–192.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Grib.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grib, S.A., Pushkar’, E.A. Can slow solar shock waves heat the corona?. Geomagn. Aeron. 54, 991–995 (2014). https://doi.org/10.1134/S0016793214080052

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016793214080052

Keywords

Navigation