Skip to main content

The sunspot—shallow or deep?

Abstract

Two sunspot models are compared-shallow and deep. According to the former, a sunspot, as a region occupied by a strong regular field and comparatively cold plasma, penetrates into the solar convection zone to a shallow depth of about 4 Mm. This corresponds to both local seismology data and a series of compelling theoretical arguments. The deep model supposes that the sunspot magnetic field penetrates to the bottom of the convective zone, with the monotone increasing with depth without being turbulized, where it attains a strength of higher than 150 kG. It is shown that the deep model contradicts some basic concepts of solar physics and cannot be an alternative to the shallow sunspot model.

This is a preview of subscription content, access via your institution.

References

  1. Basu, S., Antia, H.M., and Bogart, R.S., Ring-diagram analysis of the structure of solar active region, Astrohys. J., 2004, vol. 610, pp. 1157–1168.

    Article  Google Scholar 

  2. Bogart, R.S., Basu, S., Rabello-Soares, M.S., and Antia, H.M., Probing the subsurface structure of active regions with ring-diagram analysis, Solar Phys., 2008, vol. 251, pp. 439–451.

    Article  Google Scholar 

  3. Gizon, L., Schunker, H., Baldner, C.S. et al. (15 coauthors), Helioseismology of sunspots: a case study of NOAA region 9787, Space Sci. Rev., 2008, vol. 144, nos. 1–4, pp. 249–273.

    Google Scholar 

  4. Grinin, V.P., Theory of radiative heat exchange in polytropic atmosphere, Astrofizika, 1972, vol. 8, no. 1, pp. 53–70.

    Google Scholar 

  5. Kitchatinov, L.L. and Mazur, M.V., Stability and equilibrium of emerged magnetic flux, Solar Phys., 2000, vol. 191, pp. 325–340.

    Article  Google Scholar 

  6. Kosovichev, A.G., Duvall, T.L., Jr., and Scherrer, P.H., Time-distance inversion methods and results, Solar Phys., 2000, vol. 192, pp. 159–176.

    Article  Google Scholar 

  7. Kosovichev, A.G., Subsurface characteristics of sunspots, Adv. Space Res., 2006, vol. 38, pp. 876–885.

    Article  Google Scholar 

  8. Kosovichev, A.G., Photospheric and subphotospheric dynamics of emerging magnetic flux, Space Sci. Rev., 2009, vol. 144, pp. 175–195.

    Article  Google Scholar 

  9. Kosovichev, A.G., Local helioseismology of sunspots: Current status and perspectives, Solar Phys., 2012, vol. 279, pp. 323–348.

    Article  Google Scholar 

  10. Moradi, H. and Cally, P.S., Time-distance modeling in a simulated sunspot atmosphere, Solar Phys., 2008, vol. 251, pp. 309–327.

    Article  Google Scholar 

  11. Moradi, H., Hanasoge, S.M., and Cally, P.S., Numerical models of travel-time inhomogeneities in sunspots, Astrophys. J., 2009, vol. 690, pp. L72–L75.

    Article  Google Scholar 

  12. Moradi, H., Baldner, C., Birch, A.C., et al., (22 coauthors), Modeling the subsurface structure of sunspot, Solar Phys., 2010, vol. 267, pp. 1–62.

    Article  Google Scholar 

  13. Obridko, V.N., Sunspots and Complexes of Activity, Moscow: Nauka, 1985.

    Google Scholar 

  14. Parker, E.N., The nature of the sunspot phenomenon. I: Solutions of the heat transport equation, Solar Phys., 1974, vol. 36, pp. 249–274.

    Article  Google Scholar 

  15. Parker, E.N., Sunspots and the physics of magnetic flux tubes, Astrophys. J., 1979a, vol. 230, pp. 905–923.

    Article  Google Scholar 

  16. Parker, E.N., Cosmical Magnetic Fields. Part I, Oxford: Claredon Press, 1979b.

    Google Scholar 

  17. Ponomarenko, Yu.B., Mechanism for the formation of sunspots, Soviet Astron., 1972, vol. 16, pp. 116–120.

    Google Scholar 

  18. Rempel, M., Numerical sunspot models: Robustness of photospheric velocity and magnetic field structure, Astrophys. J., 2012, vol. 750, pp. 62–83.

    Article  Google Scholar 

  19. Schlüter, A. and Temesvary, S. The internal constitution of sunspots, in Electromagnetic Phenomena in Cosmical Physics, IAU Sympos., Lehnert, B., Ed., Cambridge University Press, 1958, vol. 6, pp. 263–285.

    Google Scholar 

  20. Solov’ev, A.A., Energetic of sunspot, Bull. Solhechnye Dannye, 1976, no. 4, pp. 54–60.

    Google Scholar 

  21. Solov’ev, A.A., An elementary energetic model of a sunspot, Soviet Astron., 1984, vol. 28, pp. 447–451.

    Google Scholar 

  22. Solov’ev, A.A., Problem of sunspot dissipation, Soviet Astron., 1991, vol. 35, no. 1, pp. 83–87.

    Google Scholar 

  23. Solov’ev, A.A. and Kirichek E.A., Subsurface structure of sunspots, Astronomy Reps., 2009, vol. 53, pp. 675–683.

    Article  Google Scholar 

  24. Solov’ev, A.A. and Kirichek, E.A., Basic properties of sunspots: equilibrium, stability and eigen oscillations, Astrophys and Space Sci., 2014, vol. 352, pp. 23–42.

    Article  Google Scholar 

  25. Zhao, J., Kosovichev, A.G., and Duval, T.L., Investigation of mass flows beneath a sunspot by time-distance helioseismology, Astrophys. J., 2001, vol. 557, pp. 384–388.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. A. Solov’ev.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Solov’ev, A.A., Kirichek, E.A. The sunspot—shallow or deep?. Geomagn. Aeron. 54, 915–919 (2014). https://doi.org/10.1134/S0016793214070123

Download citation

Keywords

  • Convection Zone
  • Ambient Medium
  • Cold Plasma
  • Magnetic Flux Tube
  • Magnetic Tube