Skip to main content
Log in

The anomaly of plasmapause and ionospheric trough positions from DEMETER data

  • Published:
Geomagnetism and Aeronomy Aims and scope Submit manuscript

Abstract

The paper addresses the study of the specific pattern of the subauroral ionosphere marked with the anomalous positions of the plasmapause, the equatorial boundary of the mid-latitude (main) ionospheric trough, and the light-ion trough under quiet solar and geophysical conditions near the magnetospheric shell with the McIlwain parameter L = 3. The anomaly was identified on the base of data of active experiments with the SURA heating facility on October 2, 2007, which were conducted as part of the SURA-International Space Station (SURA-ISS) program in the framework of the DEMETER satellite mission. Joint analysis of the orbital data from DEMETER and ISS, together with the results of the complex ground-based measurements, shows that the revealed effect, which is characteristic of the premidnight sector north of the Moscow-SURA satellite path, is not local. It is observed in a vast territory, extending from the west to the east along the same L-shell, from at least Sweden to Kamchatka. The conclusions suggested by the DEMETER data are supported by analysis of the meridional distributions of the F2-peak plasma frequencies provided by GPS radio probing of the ionosphere. Comparison of these results with the model latitudinal-longitudinal and meridional distributions of the F2-peak plasma density provided by the IRI 2007 and SMI (Russian standard model of the ionosphere) models shows that the model predictions are at odds with the empirical data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ben’kova, N.P., Kozlov, E.F., Kochenova, N.A., Samorokin, N.I., and Fligel’, M.D., Struktura i dinamika subavroral’noi ionosfery (Structure and Dynamics of Subauroral Ionosphere), Moscow: Nauka, 1993.

    Google Scholar 

  • Bryunelli, B.E. and Namgaladze, A.A., Fizika ionosfery (Physics of the Ionosphere), Moscow: Nauka, 1988.

    Google Scholar 

  • Carpenter, D.L. and Anderson, R.R., An ISEE/whistler model of electron density in the magnetosphere, J. Geophys. Res., 1992, vol. 97, no. A2, pp. 1097–1108.

    Article  Google Scholar 

  • Carpenter, D.L., Whistler evidence of a “knee” in the magnetospheric ionization density profile, J. Geophys. Res., 1963, vol. 68, no. 6, pp. 1675–1682.

    Article  Google Scholar 

  • Chappell, C.R., The terrestrial plasma source: a new perspective in solar-terrestrial processes from Dynamics Explorer, Rev. Geophys., 1988, vol. 26, no. 6, pp. 229–248.

    Article  Google Scholar 

  • Chasovitin, Yu.K., Gulyaeva, T.L., Deminov, M.G., and Ivanova, S.E., Russian Standard Model of Ionosphere (SMI), COST251TD(98)005.RAL, UK, 1998, pp. 161–172.

    Google Scholar 

  • Entsiklopediya nizkotemperaturnoi plazmy, T. 1-3: Ionosfernaya plazma, Ch. 1 (Encyclopedia of Low-Temperature Plasma, vols. 1–3: Ionospheric plasma, part 1), Kuznetsov, V.D. and Ruzhin, Yu.Ya, Eds., Moscow: Yanus-K, 2008.

    Google Scholar 

  • Deminov, M.G. and Shubin, V.N., Dynamics of subauroral ionosphere in the disturbed conditions, Geomagn. Aeron., 1987, vol. 27, no. 3, pp. 398–403.

    Google Scholar 

  • Deminov, M.G., Karpachev, A.T., Afonin, V.V., and Shmilauer, Ya., The changes in the position of the midlatitude ionospheric trough as a function of longitude and geomagnetic activity, Geomagn. Aeron., 1992, vol. 32, no. 5, pp. 185–188.

    Google Scholar 

  • Feldshtein, Ya.I. and Galperin, Yu.I., Structure of the auroral precipitations in the nightside sector of the magnetosphere, Cosmic Res., 1996, vol. 34, no. 3, pp. 209–227.

    Google Scholar 

  • Fifty Years of the Ionosphere, Ratcliffe, J.A., Ed., J. Atmos. Terr. Phys. (Special issue), 1974, vol. 36, no. 12, pp. 2069–2319.

    Google Scholar 

  • First Results of the DEMETER satellite, Parrot, M., Ed., Planet Space Sci. (Special issue), 2006, vol. 54, no. 5, pp. 411–558.

    Google Scholar 

  • Galperin, Yu.I., Sivtseva, L.D., Filippov, V.M., and Khalipov, V.L., Subavroral’naya verkhnyaya ionosfera (Subauroral Upper Ionosphere), Novosibirsk: Nauka, 1990.

    Google Scholar 

  • Gallagher, D.L., Craven, P.D., and Comfort, R.H., Global core plasma model, J. Geophys. Res., 2000, vol. 105, no. A8, pp. 18819–18833.

    Article  Google Scholar 

  • Gringauz, K.I., Kurt, V.G., Moroz, V.I., and Shklovskii, I.S., Ionized gas and fast electrons in the near-Earth interplanetary space, Dokl. Akad. Nauk SSSR, 1960, vol. 132, pp. 1062–1065.

    Google Scholar 

  • Gringauz, K.I., The structure of the ionized gas envelope of Earth from direct measurements in the USSR of local charged particle concentration, Planet. Space Sci., 1963, vol. 11, no. 3, pp. 281–296.

    Article  Google Scholar 

  • Ionosferno-magnitnye vozmushcheniya v vysokikh shirotakh (Ionospheric-Magnetic Disturbances at High Latitudes), Troshichev, O.A., Ed., Leningrad: Gidrometeoizdat, 1986.

    Google Scholar 

  • Jakowski, N. and Sardón, E., Comparison of GPS/IGS-derived TEC data with parameters measured by independent ionospheric probing techniques, Proc. IGS Analysis-Center Workshop, Neilan, R.E., Van Scoy, P.A., and Zumberge, J.F., Eds., Pasadena: Int. GPS Serv. for Geodyn. Centr. Bur., 1996, pp. 221–230.

    Google Scholar 

  • Karabadzhak, G.F., Komrakov, G.P., Kuznetsov, V.D., Plastinin, Yu.A., Ruzhin, Yu.Ya., Frolov, V.L., and Khmelinin, B.A., Studying the global spatial and time characteristics of the luminosity of the upper atmosphere and ionosphere of the Earth in response to the impact of radio wave radiation observed from ISS, Kosmonavtika Raketostroenie, 2009, vol. 51, no. 4, pp. 132–157, TsNIImash.

    Google Scholar 

  • Karpachev, A.T. and Sidorova, L.N., Detection of the trough and subtrough in the light-ion density from ISS-b satellite data at altitudes of ∼1100 km, Geomagn. Aeron., 1999, vol. 39, no. 3, pp. 318–325.

    Google Scholar 

  • Karpachev, A.T., The dependence of the main ionospheric trough shape on longitude, altitude, season, local time, and solar and magnetic activity, Geomagn. Aeron., 2003, vol. 43, no. 2, pp. 239–251.

    Google Scholar 

  • Karpachev, A.T., Large scale structure of the upper ionosphere plasma according to satellite observation data, in Entsiklopediya nizkotemperaturnoi plazmy, T. 1–3: Ionosfernaya plazma, Ch. 1 (Encyclopedia of Low-Temperature Plasma, vols. 1–3: onospheric plasma, part 1), Kuznetsov, V.D. and Ruzhin, Yu.Ya., Eds., Moscow: Yanus-K, 2008, pp. 418–446.

    Google Scholar 

  • Klimenko, V.V. and Namgaladze, A.A., The effects of nonsteady convection on the distribution of cold plasma in the ionosphere and protonosphere of the Earth, Geomagn. Aeron., 1981, vol. 21, no. 6, pp. 994–998.

    Google Scholar 

  • Kohnlein, W. and Raitt, W.J., Position of the mid-latitude trough in the topside ionosphere as deduced from ESRO-4 observations, Planet. Space Sci., 1977, vol. 25, no. 6, pp. 600–602.

    Article  Google Scholar 

  • Krinberg, I.A. and Tashchilin, A.V., Ionosfera i plazmosfera (Ionosphere and Plasmasphere), Moscow: Nauka, 1984.

    Google Scholar 

  • Moffett, R. and Hanson, W., Calculated distributions of hydrogen and helium ions in the low-latitude ionosphere, J. Atmos. Terr. Phys., 1973, vol. 35, no. 2, pp. 207–222.

    Article  Google Scholar 

  • Moffett, R.J. and Quegan, S., The mid-latitude trough in the electron concentration of the ionospheric F-layer: a review of observations and modelling, J. Atmos. Terr. Phys., 1983, vol. 45, no. 5, pp. 315–343.

    Article  Google Scholar 

  • Ossakov, S.L. and Chaturvedi, P.K., Current convective instability in diffuse aurora, Geophys. Rev. Lett., 1979, vol. 6, no. 4, pp. 332–335.

    Article  Google Scholar 

  • Ruzhin, Yu., Kuznetsov, V.D., Karabadzhak, G.F., Plastinin, Ya.A., Khmelinin, B.A., Frolov, V.L., and Komrakov, G.P., Preliminary results of ionospheric plasma modification by high-power radio emission from the Sura facility as observed on board of the ISS, Abstr. 37 th COSPAR Scientific Assembly, July 13–20, 2008, Montreal, Canada, C52-0036-08, 2008, p. 1662.

    Google Scholar 

  • Ruzhin, Yu.Ya., Ivanov, K.G., Kuznetsov, V.D., and Petrov, V.G., Controlled injection of high-power radio pulses into the ionosphere—magnetosphere system and appearance of microsubstorms on October 2, 2007, Geomagn. Aeron., 2009, vol. 49, no. 3, pp. 324–334.

    Article  Google Scholar 

  • Ruzhin, Yu.Ya., Kuznetsov, V.D., Kovalev, V.I., Bershadskaya, I.N., Karabadzhak, G.F., Plastinin, Yu.A., Frolov, V.L., Komrakov, G.P., and Parrot, M., On the possibility of localization of a substorm by using the “SURA” heating facility, Radiophys. Quantum Electron., 2012, vol. 55, no. 1–2, pp. 85–94.

    Article  Google Scholar 

  • Ruzhin, Yu.Ya, Kuznetsov, V.D., Plastinin, Yu.A., Karabadzhak, G.F., Frolov, V.L., and Parrot, M., Auroral activity caused by high-power radioemission from the SURA facility, Geomagn. Aeron., 2013, vol. 53, no. 1, pp. 43–48.

    Article  Google Scholar 

  • Ruzhin, Yu.Ya., Smirnov, V.M., and Depuev, V.H., Ionosphere anomalies during the SURA-ISS experiments program, International Reference Ionosphere (IRI) Workshop 2013: IRI and GNSS, June 24–28, 2013, Olsztyn, Poland, Session 2, 2013, p. 56.

    Google Scholar 

  • Sivtseva, L.D., Filippov V.M., Khalipov, V., et al., Studying the midlatitude ionospheric trough by the groundbased geophysical methods and synchronous measurements onboard the satellites, Kosmich. Issled., 1983, vol. 21, no. 4, pp. 584–608.

    Google Scholar 

  • Smirnov, V.M., Solution of the inverse problem of electromagnetic transmission probing of the Earth ionosphere by gradient methods, J. Commun. Technol. Electron., 2001, vol. 46, no. 1, pp. 41–45.

    Google Scholar 

  • Taylor, H.A., Jr., The light ion trough, Planet. Space Sci., 1972, vol. 20, no. 10, pp. 1593–1605.

    Article  Google Scholar 

  • Taylor, H.A. and Walsh, W.J., The light ion trough, the main trough and the plasmapause, J. Geophys. Res., 1972, vol. 77, no. 34, pp. 6716–6723.

    Article  Google Scholar 

  • Taylor, H.A., Jr. and Cordier, G.R., In situ observations of irregular ionospheric structure associated with the plasmapause, Planet. Space Sci., 1974, vol. 22, no. 9, pp. 1289–1296.

    Article  Google Scholar 

  • Volkov, M.A., Lyatskii, V.B., and Mal’tsev, Yu.P., On the structure of the fields and field-aligned currents in the Harang discontinuity, Geomagn. Aeron., 1985, vol. 25, no. 3, pp. 445–449.

    Google Scholar 

  • Wrenn, G.L. and Raitt, W.J., In situ observations of midlatitude ionospheric phenomena associated with the plasmapause. Part II, Ann. Geophys., 1975, vol. 31, no. 1, pp. 17–28.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. Ya. Ruzhin.

Additional information

Original Russian Text © Yu.Ya. Ruzhin, M. Parrot, V.M. Smirnov, V.Kh. Depuev, 2014, published in Geomagnetizm i Aeronomiya, 2014, Vol. 54, No. 6, pp. 780–788.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ruzhin, Y.Y., Parrot, M., Smirnov, V.M. et al. The anomaly of plasmapause and ionospheric trough positions from DEMETER data. Geomagn. Aeron. 54, 763–772 (2014). https://doi.org/10.1134/S0016793214060176

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016793214060176

Keywords

Navigation