Skip to main content
Log in

Polar cap response to the solar wind density jump under constant southward IMF

  • Published:
Geomagnetism and Aeronomy Aims and scope Submit manuscript

Abstract

Sharp changes of the solar wind parameters determining the dynamic pressure jump lead to strong magnetosphere-ionosphere disturbances. Here the effect on the Earth’s ionospheric high latitudes of the solar wind dynamic pressure pulse caused only by the increase of the interplanetary plasma density under southward constant IMF is considered. We investigate reaction of the cross-polar cap potential on the increase of AL index and/or jump of the solar wind density. It is found that for the case of 10 January 1997 the main contribution to the polar cap potential drop increase gave the growth of AL index relative to the input of the solar wind density jump. We also study the influence of the solar wind density increase on the crosspolar cap potential for the quiet magnetospheric conditions. It occurred that the polar cap potential difference decreases with the great increase of the interplanetary plasma density. For the disturbed magnetosphere the main role in the polar cap potential drop increase plays increase of AL. Thus, we found the change of the cross-polar cap potential due to the AL index variations and/or the solar wind density drop even in a case when the interplanetary electric field is constant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alexeev, I.I., Regular magnetic field in the Earth’s magnetosphere (in Russian), Geomag. Aeron., 1978, vol. 18, pp. 447–452.

    Google Scholar 

  • Alexeev, I.I., The penetration of interplanetary magnetic and electric fields into the magnetosphere, J. Geomag. Geoelectron., 1986, vol. 38, pp. 1199–1221.

    Article  Google Scholar 

  • Alexeev, I.I., Belenkaya, E.S., Kalegaev, V.V., and Lyutov, Yu.G., Electric fields and field-aligned current generation in the magnetosphere, J. Geophys. Res., 1993, vol. 98, no. 3, pp. 4041–4051.

    Article  Google Scholar 

  • Alexeev, I.I., Kalegaev, V.V., Belenkaya, E.S., Bobrovnikov, S.Yu., Feldstein, Ya.I., and Gromova, L.I., Dynamic model of the magnetosphere: case study for January 9–12, 1997, J. Geophys. Res., 2001, vol. 106, no. A11, pp. 25683–25693.

    Article  Google Scholar 

  • Alexeev, I.I., Belenkaya, E.S., Bobrovnikov, S.Yu., and Kalegaev, V.V., Modelling of the electromagnetic field in the interplanetary space and in the Earth’s magnetosphere, Space Sci. Rev., 2003, no. 107, pp. 7–26.

    Google Scholar 

  • Belenkaya, E.S., Transient current systems, Geomag. Aeron., 2003, vol. 43, no. 5, pp. 602–608.

    Google Scholar 

  • Belenkaya, E.S., Transition current systems in the Earth’s and Saturn’s magnetospheres, Geomag. Aeron., 2006, vol. 46, no. 5, pp. 555–562.

    Article  Google Scholar 

  • Belenkaya, E.S., Alexeev, I.I., and Clauer, C.R., Fieldaligned current distribution in the transition current system, J. Geophys. Res., 2004, vol. 109, no. A11207, doi:10.1029/2004JA010484.

    Google Scholar 

  • Belenkaya, E.S., Cowley, S.W.H., and Kalegaev, V.V., The response of the high-latitude ionosphere to the solar-wind pressure jump with a southward IMF on January 10, 1997, Geomag. Aeron., 2014, vol. 54, no. 2, pp. 203–206.

    Article  Google Scholar 

  • Bhattarai, S.K., Lopez, R.E., Bruntz, R., Lyon, J.G., and Wiltberger, M., Simulation of the polar cap potential during periods with northward interplanetary magnetic field, J. Geophys. Res., 2012, vol. 117, no. A04219, doi:10.1029/2011JA017143.

    Google Scholar 

  • Blomberg, L.G., Cumnock, J.A., Alexeev, I.I., Belenkaya, E.S., Bobrovnikov, S.Yu., and Kalegaev, V.V., Transpolar aurora: time evolution, associated convection patterns, and a possible cause, Ann. Geophys., 2005, vol. 23, pp. 1917–1930.

    Article  Google Scholar 

  • Borodkova, N.L., Zastenker, G.N., Ryazantseva, M.O., and Richardson, J., Large and sharp changes of solar wind dynamic pressure and disturbances of the magnetospheric magnetic field at geosynchronous orbit caused by these variations, Cos. Res., 2006, vol. 44, no. 1, pp. 3–11.

    Google Scholar 

  • Boudouridis, A., Zesta, E., Lyons, R., Anderson, P.C., and Lummerzheim, D., Effect of solar wind pressure pulses on the size and strength of the auroral oval, J. Geophys. Res., 2003, vol. 108(A4), p. 8012, doi:10.1029/2002JA009373.

    Article  Google Scholar 

  • Boudouridis, A., Zesta, Lyons, L.R., Anderson, P.C., and Lummerzheim, D., Enhanced solar wind geoeffectiveness after a sudden increase in dynamic pressure during southward IMF orientation, J. Geophys. Res., 2005, vol. 110, no. A05214, doi:10.1029/2004JA010704.

    Google Scholar 

  • Boudouridis, A., Lyons, L.R., Zesta, E., Ruohoniemi, J.M., and Lummerzheim, D., Nightside flow enchancement associated with solar wind dynamic pressure driven reconnection, J. Geophys. Res., 2008, vol. 113, no. A12211, doi:10.1029/2008JA013489.

    Google Scholar 

  • Boudouridis, A., Lyons, L.R., Zesta, E., Weygand, J.M., Ribeiro, A.J., and Ruohoniemi, J.M., Statistical study of the effect of solar wind dynamic pressure fronts on the dayside and nightside ionospheric convection, J. Geophys. Res., 2011, vol. 116, no. A10233, doi:10.1029/2011JA016582.

    Google Scholar 

  • Boyle, C.B. and Reiff, P.H., Empirical polar cap potentials, J. Geophys. Res., 1997, vol. 102, no. A1, pp. 111–125.

    Article  Google Scholar 

  • Brittnacher, M., Wilber, M., Fillingim, M., Chua, D., Parks, G., Spann, J., and Germany, G., Global auroral response to a solar wind pressure pulse, Adv. Space Res., 2000, vol. 25, no. 7/8, pp. 1377–1385.

    Article  Google Scholar 

  • Burlaga, L., Fitenreiter, R., Lepping, R., Ogilvie, K., Szabo, A., Lazarus, A., Steinberg, J., Gloeckler, G., Howard, R., Michels, D., Farrugia, C., Lin, R.P., and Larson, D.E., A magnetic cloud containing prominence material: January 1997, J. Geophys. Res., 1998, vol. 103(A1), pp. 277–285.

    Article  Google Scholar 

  • Cerisier, J.-C., Marchaudon, A., Bosqued, J.-M., McWilliams, K., Frey, H.U., Bouhram, M., Laakso, H., Dunlop, M., Förster, M., and Fazakerley, A., Ionospheric signatures of plasma injections in the cusp triggered by solar wind pressure pulses, J. Geophys. Res., 2005, vol. 110, no. A08204, doi:10.1029/2004JA010962.

    Google Scholar 

  • Clauer, C.R., Jr., Alexeev, I.I., Belenkaya, E.S., and Baker, J.B., Special features of the September 24–27, 1998 storm during high solar wind dynamic pressure and northward interplanetary magnetic field, J. Geophys. Res., 2001, vol. 106, pp. 25 695–25 712.

    Article  Google Scholar 

  • Dmitriev, A.V. and Suvorova, A.V., The shape of strongly disturbed dayside magnetopause, Terr. Atmos. Ocean. Sci., 2013, vol. 24, pp. 225–232.

    Article  Google Scholar 

  • Gillies, D.M., St.-Maurice, J.-P., McWilliams, K.A., and Milan, S., Global-scale observations of ionospheric convection variation in response to sudden increases in the solar wind dynamic pressure, J. Geophys. Res., 2012, vol. 117, no. A04209, doi:10.1029/2011JA017255.

    Google Scholar 

  • Kamide, Y., Shue, J.-H., Li, X., Lu, G., Brittnacher, M.J., Parks, G.K., and Reeves, G.D., Internally and externally triggered substorms: a case study of the January 10, 1997 events, in SUBSTORMS-4, Kokubun, S. and Kamide, Y., Ed., Tokyo: Terra Sci., 1998, pp. 305–308.

    Chapter  Google Scholar 

  • Kivelson, M.G. and Ridley, A.J., Saturation of the polar cap potential: Inference from Alfven wing arguments, J. Geophys. Res., 2008, vol. 113, no. A05214, doi:10.1029/2007JA012302.

    Google Scholar 

  • Lopez, R.E., Bruntz, R.J., Mitchell, E.J., Wiltberger, M., and Lyon, J.G., The role of magnetosheath force balance in regulating the dayside reconnection potential, J. Geophys. Res., 2010, vol. 115, no. A12216, doi:10.1029/2009JA014597.

    Google Scholar 

  • Lyons, L.R., Geomagnetic disturbances: characteristics of, distinction between types, and relations to interplanetary conditions, J. Atmos. Sol. Terr. Phys., 2000, vol. 62, pp. 1087–1114.

    Article  Google Scholar 

  • Lyons, L.R., Zesta, E., Samson, J.C., and Reeves, G.D., Auroral disturbances during the January 10, 1997 magnetic storm, Geophys. Ress. Lett., 2000, vol. 27, pp. 3237–3241.

    Article  Google Scholar 

  • Mitchell, E.J., Lopez, R.E., Bruntz, R.J., Wiltberger, M., Lyon, J.G., Allen, R.C., Cockrell, S.J., and Whittlesey, P.L., Saturation of transpolar potential for large Y component interplanetary magnetic field, J. Geophys. Res., 2010, vol. 115, no. A06201, doi:10.1029/2009JA015119.

    Google Scholar 

  • Ngwira, C.M., McKinnell, L.-A., Cilliers, P.J., and Coster, A.J., Ionospheric observations during the geomagnetic storm events on 24–27 July 2004: Long-duration positive storm effects, J. Geophys. Res., 2012, vol. 117, no. A00L02, doi:10.1029/2011JA016990.

    Google Scholar 

  • Ober, D.M., Wilson, G.R., Maynard, N.C., Burke, W.J., and Siebert, K.D., MHD simulation of the transpolar potential after a solar-wind density pulse, Geophys. Res. Lett., 2006, vol. 33, no. L04106, doi:10.1029/2005GL024655.

    Google Scholar 

  • Russell, C.T., Luhmann, J.G., and Lu, G., Nonlinear response of the polar ionosphere to large values of the interplanetary electric field, J. Geophys. Res., 2001, vol. 106, no. A9, pp. 18 495–18 504.

    Article  Google Scholar 

  • Shue, J.-H. and Kamide, Y., Effects of solar wind density on the westward electrojet, in SUBSTORMS-4, Kokubun, S. and Kamide, Y., Terra Scientific Publishing Company, Tokyo, Dordrecht: Kluwer Academic Publishers, 1998, pp. 677–680.

    Google Scholar 

  • Shue, J.-H., Song, P., Russell, C.T., Steinberg, J.T., Chao, J.K., Zastenker, G., Vaisberg, O.L., Kokubun, S., Singer, H.J., Detman, T.R., Kawano, H., Magnetopause location under extreme solar wind conditions, J. Geophys. Res., 1998, vol. 103, no. A8, pp. 17691–17700.

    Article  Google Scholar 

  • Shue, J.-H., Song, P., Russell, C.T., Chao, J.K., and Yang, Y.H., Toward predicting the position of the magnetopause within geosynchronous orbit, J. Geophys. Res., 2000, vol. 105, pp. 2641–2656.

    Article  Google Scholar 

  • Sundberg, K.A.T., Cumnock, J.A., and Bloomberg, L.G., Reverse convection potential: a statistical study of the general properties of lobe reconnection and saturation effects during northward IMF, J. Geophys. Res., 2009. vol. 114, no. A06205, doi:10.1029/2008JA013838.

    Google Scholar 

  • Tamao, T., Unsteady interactions of solar wind disturbances with the magnetosphere, J. Geophys. Res., 1975, vol. 80, pp. 4230–4236.

    Article  Google Scholar 

  • Zesta, E., Singer, H.J., Lummerzheim, D., Russel, C.T., Lyons, L.R., and Brittnacher, M.J., The effect of the January 10, 1997, pressure pulse on the magnetosphere-ionosphere current system, in Magnetospheric Current Systems, Geophys. Monogr., Ohtani, S., Fujii, R., Hesse, M., and Lysak, R.L., Ed., Washington, D.C.: AGU, vol. 118, pp. 217–237.

  • Wilken, B., Goertz, C.K., Baker, D.N., Higbie, P.R., and Fritz, T.A., The SSC on July 29, 1977 and its propagation within the magnetosphere, J. Geophys. Res., 1982, vol. 87, no. A8, pp. 5901–5910.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. S. Belenkaya.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belenkaya, E.S., Kalegaev, V.V. & Blokhina, M.S. Polar cap response to the solar wind density jump under constant southward IMF. Geomagn. Aeron. 54, 702–711 (2014). https://doi.org/10.1134/S0016793214060085

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016793214060085

Keywords

Navigation