Skip to main content
Log in

Empirical model for variation of the continuum emission in the upper atmosphere. 2. Infrared components

  • Published:
Geomagnetism and Aeronomy Aims and scope Submit manuscript

Abstract

The absolute integral intensity of the IR components of the continuum emission is calculated from the laboratory velocities of photochemical reactions between NO and nonexcited and excited O3 molecules. The vertical intensity distribution of the continuous radiation spectrum of the upper atmosphere (continuum) in the IR area spans a range of heights of the middle atmosphere from 10 to 15 km. A comparison of the calculated values of the continuum intensity with the results of its spectrophotometric surface measurements in the near-IR spectrum allowed refinement of the coefficient of velocity of the NO-ozone reaction responsible for origination of the continuum emission in the IR spectrum range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ali, A.A., Ogryzlo, E.A., Shen, Y.Q., and Wassel, P.T., The formation of O2(a 1Δg) in homogeneous and heterogeneous atom recombination, Can. J. Phys., 1986, vol. 64, no. 12, pp. 1614–1620.

    Article  Google Scholar 

  • Allen, M., Linine, J., and Yung, Y.L., The vertical distribution of ozone in the mesosphere and lower thermosphere, J. Geophys. Res., 1984, vol. 89, no. D3, pp. 4841–4872.

    Article  Google Scholar 

  • Atkinson, R., Baulch, D.L., Cox, R.A., Crowley, J.N., Hampson, R.F., Hynes, R.G., Jenkins, M.E., Rossi, M.J., and Troe, J., Evaluated kinetics and photochemical data for atmospheric chemistry: Volume I—gas phase reactions of Ox, HOx, NOx and SOx species, Atmos. Chem. Phys, 2004, vol. 4, pp. 1461–1738.

    Article  Google Scholar 

  • Barth, C.A. and Hildebrandt, A.F., The 5577 Å airglow emission mechanism, J. Geophys. Res., 1961, vol. 66, no. 3, pp. 985–986.

    Article  Google Scholar 

  • Barth, C.A., Three-body reaction, J. Géophys., 1964, vol. 20, no. 2, pp. 182–196.

    Google Scholar 

  • Bates, D.R., Transition probabilities of the bands of the oxygen systems of the nightglow, Planet. Space Sci., 1988, vol. 36, no. 9, pp. 869–873.

    Article  Google Scholar 

  • Clough, P.N. and Thrush, B.A., Mechanism of chemiluminescent reaction between nitric oxide and ozone, Trans. Faraday Soc., 1967, vol. 63, no. 4, pp. 915–925.

    Article  Google Scholar 

  • Divari, N.B., Zodiakal’nyi svet (Zodiac Light), Odessa: Astroprint, 2003.

    Google Scholar 

  • Funke, B., López-Puertas, M., von Clarmann, T., et al., Retrieval of stratospheric NOx from 5.3 and 6.2 μm nonlocal thermodynamic equilibrium emissions measured by Michelson interferometer for passive atmospheric sounding (MIRAS) on Envisat, J. Geophys. Res., 2005, vol. 110, D09302, p. 13. doi 10.1029/2004JD005225.

    Google Scholar 

  • Gadsden, M., The nightglow continuum emission, J. Atmos. Terr. Phys., 1967, vol. 29, no. 5, pp. 603–606.

    Article  Google Scholar 

  • Gadsden, M. and Marovich, E., The nightglow continuum, J. Atmos. Terr. Phys., 1973, vol. 35, no. 9, pp. 1601–1614.

    Article  Google Scholar 

  • Gattinger, R.L., Interpretation of airglow in terms of excitation mechanisms, in The Radiating Atmosphere, McCormac, B.M., Ed, Dordrecht: D. Reidel, 1971, pp. 51–63.

    Chapter  Google Scholar 

  • Ghosh, S.N., Srivastava, A.N., and Shukla, R.V., Experimental study of NO2 continuum in the afterglow of N2 and O2 mixture, Ann. Géophys., 1970, vol. 26, no. 1, pp. 53–58.

    Google Scholar 

  • Golde, M.F., Roche, A.E., and Kaufman, F., Absolute rate constant for the O + NO chemiluminescence in the near infrared, J. Chem. Phys., 1973, vol. 59, no. 8, pp. 3953–3959.

    Article  Google Scholar 

  • Greer, R.G.H., Murtagh, D.P., McDade, I.C., et al., ETON 1: A data base pertinent to the study of energy transfer in the oxygen nightglow, Planet. Space Sci., 1986, vol. 34, no. 9, pp. 771–788.

    Article  Google Scholar 

  • Gurvich, A.S., Vorob’ev, V.V., Savchenko, S.A., Pakhomov, A.I., Padalka, G.I., Shefov, N.N., and Semenov, A.I., Nightglow of the upper atmosphere in the 420–530-nm range by measurements on-board Mir spacecraft in 1999, Geomagn. Aeron., (Engl. Transl.) 2002, vol. 42, no. 4, pp. 514–519.

    Google Scholar 

  • Howell, C.D., Michelangeli, D.V., Allen, M., et al., SME observation of O2(a 1Δg) nightglow: An assessment of the chemical production mechanism, Planet. Space Sci., 1990, vol. 38, no. 4, pp. 529–537.

    Article  Google Scholar 

  • Johnston, J.E. and Broadfoot, A.L., Midlatitude observations of the night airglow: Implications to quenching near the mesopause, J. Geophys. Res., 1993, vol. 98, no. A12, pp. 21593–21603.

    Article  Google Scholar 

  • Kaufman, F., Air afterglow and kinetics of some reactions of atomic oxygen, J. Chem. Phys., 1958, vol. 28, no. 1, pp. 352–353.

    Article  Google Scholar 

  • Kenner, R.D. and Ogryzlo, E.A., Orange chemiluminescence from NO2, J. Chem. Phys., 1984, vol. 80, no. 1, pp. 1–6.

    Article  Google Scholar 

  • Llewellyn, E.J. and Solheim, B.H., The excitation of the infrared atmospheric oxygen bands in nightglow, Planet. Space Sci., 1978, vol. 26, no. 6, pp. 533–538.

    Article  Google Scholar 

  • McClatchey, R.A., Benedict, W.S., Clough, S.A., Burch, D.E., Calfee, R.F., Fox, K., Rothman, L.S., and Garing, J.S., AFCGL atmospheric absorption line parameters compilation, In AFCRL-TR, Begford: L.G. Hanscom Field, 1973, 01730, no. 434.

    Google Scholar 

  • McDade, I.C., Llewellyn, E.J., Greer, R.G.H., and Murtagh, D.P., ETON 3: altitude profile of the nightglow continuum at green and near infrared wavelengths, Planet. Space Sci., 1986, vol. 34, no. 9, pp. 801–810.

    Article  Google Scholar 

  • Meira, L.G., Rocket measurements of upper atmospheric nitric oxide and their consequences to the ionosphere, J. Geophys. Res., 1971, vol. 76, no. 1, pp. 202–212.

    Article  Google Scholar 

  • Newman, S.M., Lane, I.C., Orr-Ewing, A.J., Newnham, D.A., and Ballard, J., Integrated absorption intensity and Einstein coefficients for the O2 a 1ΔgX 3Σ g (0,0) transition: a comparison of cavity ring-down and high resolution Fourier transform spectroscopy with a long-path absorption cell, J. Chem. Phys., 1999, vol. 110, no. 22, pp. 10749–10757.

    Article  Google Scholar 

  • Ogawa, T., Excitation processes of infrared atmospheric emissions, Planet. Space Sci., 1976, vol. 24, no. 8, pp. 749–756.

    Article  Google Scholar 

  • Perminov, V.I. and Semenov, A.I., Non-equilibrium of rotating temperature of the OH bands with high vibration excitation, Geomagn. Aeron., 1992, vol. 32, no. 2, pp. 175–178.

    Google Scholar 

  • Phillips, K.F. and Schiff, H.I., Mass spectrometric studies of atom reactions. 1. Reactions in the atomic nitrogenozone system, J. Chem. Phys., 1962, vol. 36, no. 6, pp. 1509–1517.

    Article  Google Scholar 

  • Roach, F. and Gordon, J., The Light of the Night Sky, Dordrecht: D. Reidel, 1973.

    Book  Google Scholar 

  • von Rosenberg, C.W. and Trainor, D.W., Observations of vibrationally excited O3 formed by recombination, J. Chem. Phys., 1973, vol. 59, no. 4, p. 2142.

    Article  Google Scholar 

  • Semenov A.I., Shefov N.N. An empirical model for the variations in the hydroxyl emission, Geomagn. Aer. (Engl. Transl.) 1996, vol. 36, no. 4, pp. 468–480.

    Google Scholar 

  • Semenov, A.I., Shefov, N.N., and Medvedeva, I.V., An empirical model for the variation of the continuum of the upper atmosphere. 1. Intensity, Geomagn. Aeron., (Engl. Transl.) 2014, vol. 54, no. 4, pp. 528–539.

    Google Scholar 

  • Shefov N.N., Semenov A.I., Yurchenko, O.T., Empirical model of the ozone vertical distribution at the nighttime mid-latitude mesopause, Geomagn. Aer., (Engl. Transl.) 2002, vol. 42, no. 3, pp. 383–389.

    Google Scholar 

  • Shefov, N.N., Semenov, A.I., and Khomich, V.Yu., Izluchenie verkhnei atmosfery-indikator ee strukturnykh i dinamicheskikh karakteristik (Radiation of the Upper Atmosphere as an Indicator of Its Structural and Dynamic Characteristics) Moscow: GEOS, 2006.

    Google Scholar 

  • Sobolev, V.G., Continuum in night airglow between 8000–11000 A, Planet. Space Sci., 1978, vol. 26, no. 7, pp. 703–704.

    Article  Google Scholar 

  • Sobolev, V.G., Continuum of the near-IR spectrum area, in Polar Airglows and the Light of the Night Sky Krasovskii, V.I., Ed., Moscow: Sovetskoe Radio, 1978, pp. 30–35.

    Google Scholar 

  • Vlasov, M.N., Klopovskii, K.S., Lopaev, D.V., Popov, N.A., Rakhimov, A.T., and Rakhimova, T.V., The mechanism of singlet oxygen emission in the upper atmosphere, Cosmic Res., 1997, vol. 35, no. 3, pp. 219–225.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Semenov.

Additional information

Original Russian Text © A.I. Semenov, N.N. Shefov, I.V. Medvedeva, 2014, published in Geomagnetizm i Aeronomiya, 2014, Vol. 54, No. 5, pp. 701–712.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Semenov, A.I., Shefov, N.N. & Medvedeva, I.V. Empirical model for variation of the continuum emission in the upper atmosphere. 2. Infrared components. Geomagn. Aeron. 54, 655–665 (2014). https://doi.org/10.1134/S0016793214050168

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016793214050168

Keywords

Navigation