Skip to main content
Log in

Ranges of AGW propagation in the Earth’s atmosphere

  • Published:
Geomagnetism and Aeronomy Aims and scope Submit manuscript

Abstract

The propagation of atmospheric gravity waves (AGWs) is studied in the context of geometrical optics in the nonisothermal, viscous, and thermal-conductive atmosphere of Earth in the presence of wind shifts. Parametric diagrams are plotted, determining the regions of allowed frequencies and horizontal phase velocities of AGWs depending on the altitude. It is shown that a part of the spectrum of AGWs propagates in stationary air in an altitude range from the Earth’s surface through the ionospheric F1 layer. AGW from nearearth sources attenuate below 250 km, while waves generated at altitudes of about 300 km and higher do not reach the Earth’s surface because of the inner reflection from the thermosphere base. The pattern changes under strong thermospheric winds. AGW dissipation decreases with an adverse wind shift and, hence, a part of the wave spectrum penetrated from the lower atmosphere to the altitudes of F2 layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akhmedov, R.R. and Kunitsyn, V.E., Simulation of the ionospheric disturbances caused by earthquakes and explosions, Geomagn. Aeron. (Engl. Transl.), 2004, vol. 44, no. 1, pp. 95–102.

    Google Scholar 

  • Bidlingmaer, E.R. and Pogorel’tsev, A.I., Numerical simulation of acoustic-gravity wave transformation into temperature and viscous waves in the thermosphere, Izv. Akad. Nauk, Fiz. Atmos. Okeana, 1992, vol. 28, no. 1, pp. 64–73.

    Google Scholar 

  • Chernogor, L.F., Radiofizicheskie i geomagnitnye effekty startov raket (Radiophysical and Geomagnetic Effects of Missile Takeoff), Kharkiv: V.N. Karazin Kharkiv National University, 2009.

    Google Scholar 

  • Ding, F., Wan, W., and Yuan, H., The influence of background winds and attenuation on the propagation of the atmospheric gravity waves, J. Atmos. Sol.-Terr. Phys., 2003, vol. 65, pp. 857–869.

    Article  Google Scholar 

  • Erokhin, N.S., Mikhailovskaya, L.A., and Shalimov, S.L., Propagation of large-scale inner gravity waves through wind structures in the lower and upper atmosphere to ionospheric altitudes, Geofizich. Issled., 2007, no. 7, pp. 53–64.

    Google Scholar 

  • Fedorenko, A.K., Lizunov, G.V., and Rotkel’, Kh., Satellite observations of quasi-wave atmospheric disturbances at heights of the F region caused by powerful earthquakes, Geomagn. Aeron. (Engl. Transl.), 2005, vol. 45, no. 3, pp. 380–388.

    Google Scholar 

  • Fedorenko, A.K., Acoustic-gravity wave propagation direction over Earths’ polar caps, Kosm. Nauka Tekhnol., 2011, vol. 17, no. 3, pp. 34–44.

    Google Scholar 

  • Francis, S.H., Global propagation of atmospheric gravity waves: A review, J. Atmos. Sol.-Terr. Phys., 1975, vol. 37, pp. 1011–1054.

    Article  Google Scholar 

  • Fritts, D.C., Gravity wave saturation in the middle atmosphere: A review of theory and observations, Rev. Geophys. Space Phys., 1984, vol. 22, no. 3, pp. 275–308.

    Article  Google Scholar 

  • Fritts, D.C. and Vadas, S.L., Gravity wave penetration into the thermosphere: Sensitivity to solar cycle variations and mean winds, Ann. Geophysicae. (SpreadFEx special issue), 2008, vol. 26, no. 12, pp. 3841–3861.

    Article  Google Scholar 

  • Fritts, D.C. and Lund, T.X., Gravity wave influences in the thermosphere and ionosphere: Observations and recent modeling, in Aeronomy of the Earth’s Atmosphere and Ionosphere, IAGA Special Sopron Book Series, 2011, vol. 2, pp. 109–130.

    Article  Google Scholar 

  • Gill, A., Atmosphere-Ocean Dynamics, New York: Academic, 1986, vol. 1.

    Google Scholar 

  • Gossard, E. and Hooke, W., Waves in the Atmosphere, Amsterdam: Elsevier, 1975.

    Google Scholar 

  • Hines, C.O., Internal atmospheric gravity waves at ionospheric heights, Can. J. Phys., 1960, vol. 38, pp. 1441–1481.

    Article  Google Scholar 

  • Hocke, K. and Schlegel, K., A review of atmospheric gravity waves and travelling ionospheric disturbances: 1982–1995, Ann. Geophys., 1996, vol. 14, no. 9, pp. 917–940.

    Google Scholar 

  • Innis, J.L. and Conde, M., Characterization of acousticgravity waves in the upper thermosphere using dynamics explorer 2 wind and temperature spectrometer (WATS) and neutral atmosphere composition spectrometer (NACS) data, J. Geophys. Res., 2002, vol. 107, no. A12, p. 1418.

    Article  Google Scholar 

  • Landau, L.D. and Lifshits, E.M., Teoreticheskaya fizika. T. 6. Gidrodinamika (Theoretical Physics. Vol. 6. Hydrodynamics), Moscow: Nauka, 1986.

    Google Scholar 

  • Lizunov, G.V. and Leont’ev, A.Yu., Approximate dispersion equation for atmospheric gravity waves, Kosm. Nauka Tekhnol., 2011, vol. 17, no. 1, pp. 43–46.

    Google Scholar 

  • Mayr, H.G., Harris, I., Herrero, F.A., Spencer, N.W., Varosi, F., and Pesnell, W.D., Thermospheric gravity waves: observations and interpretation using the transfer function model (TFM), Space Sci. Rev., 1990, vol. 54, pp. 297–375.

    Article  Google Scholar 

  • Oliver, W.L., Otsuka, Y., Sato, M., Takami, T., and Fukao, S., A climatology of F region gravity wave propagation over the middle and upper atmosphere radar, J. Geophys. Res., 1997, vol. 102, pp. 14499–14512.

    Article  Google Scholar 

  • Pogorel’tsev, A.I. and Pertsev, N.N., Influence of background wind on formation of the structure of acousticgravity waves in the thermosphere, Geomagn. Aeron., 1996, vol. 36, no. 2, pp. 111–118.

    Google Scholar 

  • Rolland, L.M., Lognonn’e, P., Astafyeva, E., Kherani, E.A., Kobayashi, N., Mann, M., and Munekane, H., The resonant response of the ionosphere imaged after the 2011 off the pacific coast of Tohoku earthquake, Earth Planets Space, 2011, vol. 63, no. 7, pp. 853–857.

    Article  Google Scholar 

  • Skorokhod, T.V. and Lizunov, G.V., Localized packets of acoustic gravity waves in the ionosphere, Geomagn. Aeron. (Engl. Transl.), 2012, vol. 52, no. 1, pp. 88–93.

    Article  Google Scholar 

  • Vadas, S.L. and Fritts, D.C., Thermospheric responses to gravity waves: Influences of increasing viscosity and thermal diffusivity, J. Geophys. Res., 2005, vol. 110, p. D15103. doi: 10.1029/2004ID005574

    Article  Google Scholar 

  • Vadas, S.L., Yue, J., She, Ch., Stamus, P.A., and Liu, A.Z., A model study of the effects of winds on concentric rings of gravity waves from a convective plume near Fort Collins on 11 May 2004, J. Geophys. Res., 2009, vol. 114, p. D06103.

    Google Scholar 

  • Yampol’skii, Yu.M., Zalizovskii, A.V., Litvinenko, L.N., Lizunov, G.V., Grovs, K., and Moldvin, M., Magnetic field variations in Antarctica and the conjugate region (New England) stimulated by cyclone activity, Radiofiz. Radioastron., 2004, vol. 9, no. 2, pp. 130–151.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. V. Lizunov.

Additional information

Original Russian Text © G.V. Lizunov, A.Yu. Leont’ev, 2014, published in Geomagnetizm i Aeronomiya, 2014, Vol. 54, No. 6, pp. 834–841.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lizunov, G.V., Leont’ev, A.Y. Ranges of AGW propagation in the Earth’s atmosphere. Geomagn. Aeron. 54, 841–848 (2014). https://doi.org/10.1134/S0016793214050089

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016793214050089

Keywords

Navigation