Skip to main content
Log in

Plasma bubble registration at altitudes of the topside ionosphere: Numerical evaluations

  • Published:
Geomagnetism and Aeronomy Aims and scope Submit manuscript

Abstract

The possibility of registering a plasma bubble at altitudes of the topside ionosphere based on its minor species He+ were studied. The characteristic times of the main aeronomic and electrodynamic processes, in which a bubble and its ion component He+ are involved, were calculated and compared. The recombination processes of helium ions in a bubble, the vertical transfer of a plasma bubble as a whole, and the diffusion transfer of the plasma bubble minor constituent (He+) were considered. The characteristic times of ambipolar and transverse (Bohm) diffusion were calculated when the diffusion transfer was estimated. The effect of the photoionization processes on plasma bubble dissipation were estimated based on the He+ bubble ion component. It was shown that the bubble filling characteristic time with an average He+ depletion to the He+ ambient density is ∼24 h. It was concluded that such a prolonged bubble lifetime makes it possible to register a plasma bubble reliably over approximately two days. However, it has been noted that only a residual plasma bubble structure, i.e., its trace visible in He+ ions, will apparently be registered during most prolonged observations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdu, M.A., Outstanding problems in the equatorial ionosphere-thermosphere electrodynamics relevant to spread F, J. Atmos. Sol.-Terr. Phys., 2001, vol. 63, no. 9, pp. 869–884.

    Article  Google Scholar 

  • Abdu, M.A., de Medeiros, R.T., Sobral, J.H.A., and Bittencourt, J.A., Spread F plasma bubble vertical rise velocities determined from spaced ionosonde observations, J. Geophys. Res., 1983, vol. 88, pp. 9197–9204.

    Article  Google Scholar 

  • Abdu, M.A., Sobral, J.H.A., and Batista, I.S., Equatorial spread F statistics in the American longitudes: Some problems relevant to ESF description in the IRI scheme, Adv. Space Res., 2000, vol. 25, pp. 113–124.

    Article  Google Scholar 

  • Aggson, T.L., Maynard, N.C., Hanson, W.B., and Saba Jack, L., Electric field observations of equatorial bubbles, J. Geophys. Res., 1992, vol. 97, pp. 2997–3009.

    Article  Google Scholar 

  • Artsimovich, L.A., Elementarnaya fizika plazmy (Elementary Plasma Physics), Moscow: Atomizdat, 1969.

    Google Scholar 

  • Bailey, G.J. and Sellek, R., A mathematical model of the Earth’s plasmasphere and its application in the study of He+ at L = 3, Ann. Geophys., 1989, vol. 8, no. 3, pp. 171–190.

    Google Scholar 

  • Bohm, D., Burhop, E.H.S., Massey, H.S.W., and Williams, R.M., The Characteristics of Electrical Discharges in Magnetic Fields, Guthrie, A. and Wakerling, R.K., Eds., New York: McGraw-Hill, 1949.

  • Bryunelli, B.E. and Namgaladze, A.A., Fizika ionosfery (Physics of the Ionosphere), Moscow: Nauka, 1998.

    Google Scholar 

  • Burke, W.J., Donatelli, D.E., Sagalyn, R.C., and Kelley, M.C., Low density regions observed at high altitudes and their connection with equatorial spread F, Planet. Space Sci., 1979, vol. 27, pp. 593–601.

    Article  Google Scholar 

  • Chandra, S., The equatorial helium ion trough and the geomagnetic anomaly, J. Atmos. Terr. Phys., 1975, vol. 37, pp. 359–367.

    Article  Google Scholar 

  • Fatkullin, M.N., Zelenova, T.I., Kozlov, V.K., Legen’ka, A.D., and Soboleva, T.N., Empiricheskie modeli sredneshirotnoi ionosfery (Empirical Models of the Midlatitude Ionosphere), Moscow: Nauka, 1981.

    Google Scholar 

  • Fejer, B.G., Farley, D.T., Woodman, R.F., and Calderon, C., Dependence of equatorial F region vertical drifts on season and solar cycle, J. Geophys. Res., 1979, vol. 84A, pp. 5792–5796.

    Article  Google Scholar 

  • Fejer, B.G., de Paula, E.R., Gonzalez, S.A., and Woodman, R.F., Average vertical and zonal F region plasma drifts over Jicamarca, J. Geophys. Res., 1991, vol. 96A, pp. 13901–13906.

    Article  Google Scholar 

  • Fejer, B.G., de Paula, E.R., Heelis, R.A., and Hanson, W.B., Global equatorial ionospheric plasma drifts measured by the “AE-E” satellite, J. Geophys. Res., 1995, vol. 100A, pp. 5769–5776.

    Article  Google Scholar 

  • Fejer, B.G., de Paula, E.R., and Scherliess, L., Incoherent scatter radar, ionosonde and satellite measurements of equatorial F region vertical plasma drifts in the evening sector, J. Geophys. Res., 1996, vol. 23A, pp. 1733–1736.

    Google Scholar 

  • Frank-Kamenetsky, D.A., Plazma-chetvertoe sostoyanie veshchestva (Plasma as the Fourth State of Matter), Moscow: Atomizdat, 1968.

    Google Scholar 

  • Gentile, L.C., Burke, W.J., and Rich, F.J., A global climatology for equatorial plasma bubbles in the topside ionosphere, Ann. Geophys., 2006, vol. 24, pp. 163–172. SRef-ID: 1432-0576.ag/2006-24-163

    Article  Google Scholar 

  • Hanson, W.B., Coley, W.R., Heelis, R.A., and Urquhart, A.L., Fast equatorial bubbles, J. Geophys. Res, 1997, vol. 102A, pp. 2039–2045.

    Article  Google Scholar 

  • Hargreaves, J.K., The Upper Atmosphere and Solar-Terrestrial Relations, New York: Van Nostrand Reinold, 1979.

    Google Scholar 

  • Huba, J.D., Joyce, G., and Krall, J., Three-dimensional equatorial spread F modeling, Geophys. Res. Lett., 2008, vol. 35, p. L10102. doi 10.1029/2008GL033509

    Article  Google Scholar 

  • Jacchia, L.G., Thermospheric temperature, density and composition: New models, Smithson. Astrophys. Obs. Spec. Rep., 1977, no. 375, pp. 1–106.

    Google Scholar 

  • Kadomtsev, B.B., Plasma turbulence, Vopr. Teor. Plazmy, 1984, no. 4, pp. 188–217.

    Google Scholar 

  • Karpachev, A.T. and Sidorova, L.N., Probability of occurrence of the midlatitude trough and low-latitude subtrough in He+ density as a function of season, local time, and magnetic activity, Geomagn. Aeron., 2000, vol. 40, no. 2, pp. 156–165.

    Google Scholar 

  • Karpachev, A.T. and Sidorova, L.N., Distinction and classification of the troughs and subtroughs in He+ density from ISS-b satellite data at 1000–1200 km altitudes, J. Atmos. Sol.-Terr. Phys., 2003, vol. 65, no. 9, pp. 997–1006.

    Article  Google Scholar 

  • McEwan, M. and Fillips, L., Chemistry of the Atmosphere, London: Arnold, 1975.

    Google Scholar 

  • Maryama, T. and Matuura, N., Global distribution of occurrence probability of spread echoes based on ISS-b observation, J. Radio Res. Lab., 1980, vol. 27, no. 124, pp. 201–216.

    Google Scholar 

  • McClure, J.P., Hanson, W.B., and Hoffman, J.F., Plasma bubbles and irregularities in the equatorial ionosphere, J. Geophys. Res., 1977, vol. 82, no. 19, pp. 2650–2656.

    Article  Google Scholar 

  • McClure, J.P., Singh, S., Bamgboye, D.K., Johnson, F.S., and Kil, H., Occurrence of equatorial F region irregularities: Evidence for tropospheric seeding, J. Geophys. Res., 1998, vol. 103A, pp. 29 119–29 135.

    Article  Google Scholar 

  • Mendillo, M., Zesta, E., Shodham, S., Sultan, P.J., Doe, R., Sahai, Y., and Baumgardner, J., Observations and modeling of the coupled latitude-altitude patterns of equatorial plasma depletions, J. Geophys. Res., 2005, vol. 110, p. A09303. doi20.1029/2005JA011157

    Google Scholar 

  • Ossakov, S.L. and Chaturvedi, P.K., Morphological studies of rising equatorial spread F bubbles, J. Geophys. Res., 1978, vol. 83A, pp. 2085–2090.

    Article  Google Scholar 

  • Ott, E., Theory of Rayleigh-Taylor bubbles in the equatorial ionosphere, J. Geophys. Res., 1978, vol. 83A, pp. 2066–2070.

    Article  Google Scholar 

  • Sahai, Y., Aarons, J., Mendillo, M., Baumgardner, J., Bittencourt, J.A., and Takahashi, H., OI 630 nm imaging observations of the equatorial plasma depletions at 16° S dip latitude, J. Atmos. Terr. Phys., 1994, vol. 56, no. 11, pp. 1461–1475.

    Article  Google Scholar 

  • Sena, L.A., Edinitsy fizicheskikh velichin i ikh razmernosti (Units and Dimensions of Physical Quantities), Moscow: Nauka, 1977.

    Google Scholar 

  • Sidorova, L.N., Plasma bubble phenomenon in the topside ionosphere, Adv. Space Res., 2007. doi 10.1016/j.astr.2007.03.067

    Google Scholar 

  • Sidorova, L.N., Topside plasma bubbles, seen as He+ density depletions, Proc. Conference on Fundamental Space Research, Sunny Beach, Bulgaria, 2008, pp. 238–241.

    Google Scholar 

  • Sidorova, L.N., Equatorial plasma bubbles at altitudes of the topside ionosphere, Geomagn. Aeron., 2008, vol. 48, no. 1, pp. 56–65.

    Article  Google Scholar 

  • Sidorova, L.N. and Filippov, S.V., Topside ionosphere He+ density depletions: Seasonal/longitudinal occurrence probability, J. Atmos. Sol.-Terr. Phys., 2012, vol. 86, pp. 83–91. doi 10.1016/j.jastp.2012.06.013

    Article  Google Scholar 

  • Sidorova, L.N. and Filippov, S.V., Longitudinal statistics of plasma bubbles observed as He+ density depletions at altitudes of the topside ionosphere Geomagn. Aeron., 2013, vol. 53, no. 1, pp. 60–72.

    Article  Google Scholar 

  • Su, S.-Y., Liu, C.H., Ho, H.H., and Chao, C.K., Distribution characteristics of topside ionospheric density irregularities: Equatorial versus midlatitude regions, J. Geophys. Res., 2006, vol. 111, p. A06305. doi 10.1029/2005JA011330

    Google Scholar 

  • Tinsley, B.A., Rohrbaugh, R.P., and Hanson, W.B., Images of transequatorial F-region bubbles in 630- and 777-nm emissions compared with satellite measurements, J. Geophys. Res., 1997, vol. 102A, pp. 2057–2077.

    Article  Google Scholar 

  • Tsunoda, R.T., Magnetic-field-aligned characteristics of plasma bubbles in the nighttime equatorial ionosphere, J. Atmos. Terr. Phys., 1980, vol. 42, no. 8, pp. 743–752.

    Article  Google Scholar 

  • Tsunoda, R.T., Livingston, R.C., McClure, J.P., and Hanson, W.B., Equatorial plasma bubbles: Vertical elongated wedges from the bottomside F layer, J. Geophys. Res., 1982, vol. 87, no. 11, pp. 9171–9180.

    Article  Google Scholar 

  • Wilford, C.R., Moffett, R.J., Rees, J.M., and Bailey, G.J., Comparison of the He+ layer observed over Arecibo during solar maximum and solar minimum with CTIP model results, J. Geophys. Res., 2003, vol. 108A. doi 10.1029/2003JA009940

  • Woodman, R.F., Vertical drift velocities and east-west electric fields at the magnetic equator, J. Geophys. Res., 1970, vol. 75, no. 31, pp. 6249–6259.

    Article  Google Scholar 

  • Woodman, R.F. and La Hoz, C., Radar observations of F-region equatorial irregularities, J. Geophys. Res., 1976, vol. 81, no. 31, pp. 5447–5466.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. N. Sidorova.

Additional information

Original Russian Text © L.N. Sidorova, S.V. Filippov, 2014, published in Geomagnetizm i Aeronomiya, 2014, Vol. 54, No. 3, pp. 355–364.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sidorova, L.N., Filippov, S.V. Plasma bubble registration at altitudes of the topside ionosphere: Numerical evaluations. Geomagn. Aeron. 54, 329–336 (2014). https://doi.org/10.1134/S0016793214030165

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016793214030165

Keywords

Navigation