Skip to main content
Log in

Dipole magnetic-field disturbance and generation of current systems by asymmetric plasma pressure

  • Published:
Geomagnetism and Aeronomy Aims and scope Submit manuscript

Abstract

Nonlinear disturbance of the dipole field by nonaxisymmetric plasma pressure distribution was analyzed under the assumption of magnetostatic equilibrium for finite values of the plasma parameter at the pressure maximum area. The distributions of isolines of the constant value of magnetic-field component B Z and the volume of magnetic flux tube in the equatorial plane were obtained. At a finite plasma pressure, local minima and maxima of the magnetic field are formed. The formation of these local maxima and minima leads to the formation of contours (not surrounding the Earth) B min = const, where B min is the minimum magnetic field on the magnetic field line. This changes the direction of the gradient of the volume of the magnetic flux tube. The configuration of appearing field-aligned currents was determined. The results obtained are discussed in terms of their use in explaining a number of effects observed in the Earth’s magnetosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akasofu, S.-I., On a self-consistent calculation of the ring current field, J. Geophys. Res., 1962, vol. 67, pp. 3617–3618.

    Article  Google Scholar 

  • Angelopoulos, V., Mukai, T., and Kokubun, S., Evidence for intermittency in earths plasma sheet and implications for selforganized criticality, Phys. Plasmas, 1999, vol. 6, no. 11, pp. 4161–4168.

    Article  Google Scholar 

  • Antonova, E.E., On non-adiabatic diffusion, fitting of concentration and temperature in the plasma sheet of the Earth’s magnetosphere, Geomagn. Aeron., 1985, vol. 25, no. 4, pp. 623–627.

    Google Scholar 

  • Antonova, E.E., Magnetostatic equilibrium and turbulent transport in Earth’s magnetosphere: A review of experimental observation data and theoretical approach, Int. J. Geomagn. Aeron., 2002, vol. 3, no. 2, pp. 117–130.

    Google Scholar 

  • Antonova, E.E. and Ganushkina, N.Yu., Geometry of the magnetic field of the Earth’s magnetosphere and generation of longitudinal currents, Geomagn. Aeron., 1995, vol. 35, no. 5, pp. 9–15.

    Google Scholar 

  • Antonova, E.E. and Ganushkina, N.Yu., Azimuthal hot plasma pressure gradients and dawn-dusk electric field formation, J. Atmos. Sol.-Terr. Phys., 1997, vol. 59, no. 11, pp. 1343–1354.

    Article  Google Scholar 

  • Antonova, E.E. and Tverskoi, B.A., On the nature of electric fields in the inner Earth’s magnetosphere, Geomagn. Aeron., 1996, vol. 36, no. 2, pp. 145–157.

    Google Scholar 

  • Antonova, E.E., Kirpichev, I.P., and Stepanova, M.V., Field-aligned current mapping and the problem of the generation of magnetospheric convection, Adv. Space Res., 2006, vol. 38, pp. 1637–1641.

    Article  Google Scholar 

  • Antonova, E.E., Kirpichev, I.P., Stepanova, M.V., Orlova, K.G., and Ovchinnikov, I.L., Topology of the high latitude magnetosphere during large magnetic storms and the main mechanisms of relativistic electron acceleration, J. Atmos. Sol.-Terr. Phys., 2009a, vol. 43, pp. 628–633.

    Google Scholar 

  • Antonova, E.E., Kirpichev, I.P., Ovchinnikov, I.L., Orlova, K.G., and Stepanova, M.V., High latitude magnetospheric topology and magnetospheric substorm, Ann. Geophys., 2009b, vol. 27, no. 10, pp. 4069–4073.

    Article  Google Scholar 

  • Antonova, E.E., Myagkova, I.M., Stepanovav, M.V., Riazantseva, M.O., Ovchinnikov, I.L., Mar’in, B.V., and Karavaev, M.V., Local particle traps in the high latitude magnetosphere and the acceleration of relativistic electrons, J. Atmos. Sol.-Terr. Phys., 2011, vol. 73, no. 11–12, pp. 1465–1471.

    Article  Google Scholar 

  • Antonova, E.E., Kirpichev, I.P., Ryazantseva, M.O., Mar’in, B.V., Pulinets, M.S., Znatkova, S.S., and Stepanova, M.V., Magnetospheric substorms and discrete arcs of the polar aurora, Moscow Univ. Phys. Bull., 2012, vol. 67, no. 6, pp. 500–507.

    Article  Google Scholar 

  • Antonova, E.E., Pulinets, M.S., Riazantseva, M.O., Znatkova, S.S., Kirpichev, I.P., and Stepanova, M.V., Turbulence in the magnetosheath and the problem of plasma penetration inside the magnetosphere, Ch. 18, Exploring the Solar Wind, M. Lazar, Ed., InTech, 2012, pp. 417–438. http://www.intechopen.com/books/exploring-the-solar-wind/turbulence-in-the-magnetosheath-and-the-problem-of-plasma-penetration-inside-the-magnetosphere.

    Google Scholar 

  • Antonova, E.E., Kirpichev, I.P., Vovchenko, V.V., Stepanova, M.V., Riazantseva, M.O., Pulinets, M.S., Ovchinnikov, I.L., and Znatkova, S.S., Characteristics of plasma ring, surrounding the earth at geocentric distances ∼7–10R E, and magnetospheric current systems, J. Atmos. Sol.-Terr. Phys., 2013, vol. 99, pp. 85–91. doi: 10.1016/j.jastp.2012.08.013.

    Article  Google Scholar 

  • Baumjohann, W., Puscmann, G., and Lühr, H., Pressure balance between lobe and plasma sheet, Geophys. Res. Lett., 1990, vol. 17, no. 1, pp. 45–48. doi: 10.1029/GL017i001p00045.

    Article  Google Scholar 

  • Borovsky, J.E. and Funsten, H.O., MHD turbulence in the Earth’s plasma sheet: Dynamics, dissipation, and driving, J. Geophys. Res., 2003, vol. 108, no. A7, p. 1284. doi: 1.1029/2002JA009625.

    Article  Google Scholar 

  • Borovsky, J.E., Elphic, R.C., Funsten, H.O., and Thomsen, M.F., The Earth’s plasma sheet as a laboratory for flow turbulence in high-β MHD, J. Plasma Phys., 1997, vol. 57, pp. 1–34. doi: 10.1017/S0022377896005259.

    Article  Google Scholar 

  • Boström, R., Mechanism for driving Birkeland currents, in Physics of the Hot Plasma in the Magnetosphere, Hultqvist, B. and Stenflo, L., Eds., Springer, 1975, pp. 341–365.

    Chapter  Google Scholar 

  • Galperin, Y.I. and Bosqued, J.M., Stationary magnetospheric convection on November 24, 1981. 1. A case study of “pressure gradient/minimum-B” auroral arc generation, Ann. Geophys., 1999, vol. 17, pp. 358–374.

    Google Scholar 

  • Galperin, Y.I., Volosevich, A.V., and Zelenyi, L.M., Pressure gradient structures in the tail neutral sheet as “Roots of the Arcs” with some effects of stochasticity, Geophys. Res. Lett., 1992, vol. 19, pp. 2163–2166.

    Article  Google Scholar 

  • Godunov, S.K. and Ryaben’kii, V.S., Raznostnye skhemy (Difference Schemes), Moscow: Nauka, 1977.

    Google Scholar 

  • Grad, H., Some new variational properties of hygromagnetic equilibria, Phys. Fluids, 1964, vol. 7, no. 8, pp. 1283–1292.

    Article  Google Scholar 

  • Iijima, T. and Potemra, T.A., The amplitude distribution of field-aligned currents at northern high latitudes observed by Triad, J. Geophys. Res., 1976, vol. 81, no. 13, pp. 2165–2174.

    Article  Google Scholar 

  • Kirpichev, I.P. and Antonova, E.E., Plasma pressure distribution in the equatorial plane of the Earth’s magnetosphere at geocentric distances of 6–10R E according to the international THEMIS mission data, Geomagn. Aeron., 2011, vol. 51, no. 4, pp. 450–455.

    Article  Google Scholar 

  • Kubyshkina, M.V., Sergeev, V.A., Dubyagin, S.V., Wing, S., Newell, P.T., Baumjohann, W., and Liu, A.T.Y., Constructing the magnetospheric model including pressure measurements, J. Geophys. Res., 2002, vol. 107, no. A6. doi: 10.1029/2001JA900167.

    Google Scholar 

  • Lui, A.T.Y., Inner magnetospheric plasma pressure distribution and its local time asymmetry, Geophys. Res. Lett., 2003, vol. 30, no. 16. doi: 10.1029/2003GL017596.

    Google Scholar 

  • Lui, A.T.Y. and Hamilton, D.C., Radial profile of quite time magnetospheric parameters, J. Geophys. Res., 1992, vol. 97, no. A12, pp. 19325–19332.

    Article  Google Scholar 

  • De Michelis, P., Daglis, I.A., and Consolini, G., An average image of proton plasma pressure and of current systems in the equatorial plane derived from AMPTE/CCE-CHEM measurements, J. Geophys. Res., 1999, vol. 104, no. A12, pp. 28615–28624. doi: 10.1029/1999JA900310.

    Article  Google Scholar 

  • Myagkova, I.M., Ryazantseva, M.O., Antonova, E.E., and Mar’in, B.V., Enhancements of fluxes of precipitating energetic electrons on the boundary of the outer radiation belt of the Earth and position of the auroral oval boundaries, Cosmic Res., 2010, vol. 48, no. 2, pp. 165–174.

    Article  Google Scholar 

  • Petrukovich, A.A., Mukai, T., Kokubun, S., Romanov, S.A., Saito, Y., Yamamoto, T., and Zelenyi, L.M., Substorm associated pressure variations in the magnetotail plasma sheet and lobe, J. Geophys. Res., 1999, vol. 104, no. A3, pp. 4501–4513. doi: 10.1029/98JA02418.

    Article  Google Scholar 

  • Pinto, V., Stepanova, M., Antonova, E.E., and Valdivia, J.A., Estimation of the eddy-diffusion coefficients in the plasma sheet using THEMIS satellite data, J. Atmos. Sol.-Terr. Phys., 2011, vol. 73, pp. 1472–1477.

    Article  Google Scholar 

  • Riazantseva, M.O., Myagkova, I.N., Karavaev, M.V., Antonova, E.E., Ovchinnikov, I.L., Marjin, B.V., Saveliev, M.A., Feigin, V.M., and Stepanova, M.V., Enhanced energetic electron fluxes at the region of the auroral oval during quiet geomagnetic conditions November 2009, Adv. Space Res., 2012, vol. 50, pp. 623–631.

    Article  Google Scholar 

  • Saito, M.H., Hau, L.-N., Hung, C.-C., Lai, Y.-T., and Chou, Y.-C., Spatial profile of magnetic field in the near-Earth plasma sheet prior to dipolarization by THEMIS: Feature of minimum B, Geophys. Res. Lett., 2010, vol. 37, no. 8, L08106. doi: 10.1029/2010GL042813.

    Article  Google Scholar 

  • Stepanova, M., Antonova, E.E., Paredes-Davis, D., Ovchinnikov, I.L., and Yermolaev, Y.I., Spatial variation of eddy-diffusion coefficients in the turbulent plasma sheet during substorms, Ann. Geophys., 2009, vol. 27, pp. 1407–1411.

    Article  Google Scholar 

  • Stepanova, M., Pinto, V., Valdivia, J.A., and Antonova, E.E., Spatial distribution of the eddy diffusion coefficients in the plasma sheet during quiet time and substorms from THEMIS satellite data, J. Geophys. Res., 2011, vol. 116, no. A5, p. A00124. doi: 10.1029/2010JA015887.

    Google Scholar 

  • Tverskoi, B.A., On longitudinal currents in the magnetosphere, Geomagn. Aeron., 1982, vol. 22, no. 6, pp. 991–995.

    Google Scholar 

  • Vasyliunas, V.M., Mathematical models of magnetospheric convection and its coupling to the ionosphere, in Particles and Fields in the Magnetosphere, McCormac, B.M., Ed., Springer, 1970, pp. 60–71.

    Chapter  Google Scholar 

  • Vovchenko, V.V. and Antonova, E.E., Nonlinear disturbance of the dipole field by an axisymmetric plasma distribution, Geomagn. Aeron., 2010, vol. 50, no. 6, pp. 739–748.

    Article  Google Scholar 

  • Vovchenko, V.V. and Antonova, E.E., Dependence of volumes of magnetic flux tubes on plasma pressure and disturbance in the magnetic field in the axially symmetric case, Geomagn. Aeron., 2012, vol. 52, no. 1, pp. 49–59.

    Article  Google Scholar 

  • Wang, C.-P., Gkioulidou, M., Lyons, L.R., Wolf, R.A., Angelopoulos, V., Nagai, T., Weygand, J.M., and Lui, A.T.Y., Spatial distributions of ions and electrons from the plasma sheet to the inner magnetosphere: comparisons between THEMIS-Geotail statistical results and the rice convection model, J. Geophys. Res., 2011, vol. 116, no. A11, p. A11216. doi: 10.1029/2011JA016809.

    Article  Google Scholar 

  • Wang, C.-P., Zaharia, S.G., Lyons, L.R., and Angelopoulos, V., Spatial distributions of ion pitch angle anisotropy in the near-earth magnetosphere and tail plasma sheet, J. Geophys. Res. Space Phys., 2013, vol. 118, no. 1, pp. 244–255. doi: 10.1029/2012JA018275.

    Article  Google Scholar 

  • Watanabe, K. and Sato, T., Global simulation of the solar wind-magnetosphere interactions. the importance of its numerical validity, J. Geophys. Res., 1990, vol. 95, no. A1, pp. 75–88.

    Article  Google Scholar 

  • Wing, S., Gkioulidou, M., Johnson, J.R., Newell, P.T., and Wang, C.-P., Auroral particle precipitation characterized by the substorm cycle, J. Geophys. Res. Space Phys., 2013, vol. 118, no. 3, pp. 1022–1039. doi: 10.1002/jgra.50160.

    Article  Google Scholar 

  • Xing, X., Lyons, L.R., Angelopoulos, V., Larson, D., McFadden, J., Carlson, C., Runov, A., and Auster, U., Azimuthal plasma pressure gradient in quiet time plasma sheet, Geophys. Res. Lett., 2009, vol. 36, no. 14, p. L14105. doi: 10.1029/2009GL038881.

    Article  Google Scholar 

  • Zaharia, S., Improved Euler potential method for three-dimensional magnetospheric equilibrium, J. Geophys. Res., 2008, vol. 113, no. A8, p. A08221. doi: 10.1029/2008JA013325.

    Google Scholar 

  • Zaharia, S. and Cheng, C.Z., Near-Earth thin current sheets and Birkeland currents during substorm growth phase, Geophys. Res. Lett., 2003, vol. 30, no. 17, p. 1883, doi: 10.1029/2003GL017456.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. E. Antonova.

Additional information

Original Russian Text © V.V. Vovchenko, E.E. Antonova, 2014, published in Geomagnetizm i Aeronomiya, 2014, Vol. 54, No. 2, pp. 176–184.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vovchenko, V.V., Antonova, E.E. Dipole magnetic-field disturbance and generation of current systems by asymmetric plasma pressure. Geomagn. Aeron. 54, 164–172 (2014). https://doi.org/10.1134/S0016793214020200

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016793214020200

Keywords

Navigation