Skip to main content
Log in

Reduction of the atomic oxygen content in the upper atmosphere

  • Published:
Geomagnetism and Aeronomy Aims and scope Submit manuscript

Abstract

It is theorized that the discovered negative trends in the critical frequency of the F2 layer are caused by the reduction (a negative trend) of the atomic oxygen concentration in the thermosphere. Such a reduction may be caused by intensification of the turbulence in the region of the turbopause (100–120 km). Arguments are presented in favor of an increase in the turbulence taking place caused by the increase in penetration of internal waves to the turbopause heights.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bremer, J., Trends in the thermosphere derived from global ionospheric observations, Adv. Space Res., 2001, vol. 28, no. 7, pp. 997–1006.

    Article  Google Scholar 

  • Danilov, A.D., New ideas in the D-region modeling, Adv. Space Res., 2000, vol. 25, no. 1, pp. 14–19.

    Article  Google Scholar 

  • Danilov, A.D., Long-term trends in the upper atmosphere and ionosphere (a review), Geomagn. Aeron., 2012, vol. 52, no. 3, pp. 271–291.

    Article  Google Scholar 

  • Danilov, A.D. and Kalgin, Yu.A., Seasonal and latitudinal variations of eddy diffusion coefficient in the mesosphere and lower thermosphere, J. Atmos. Terr. Phys., 1992, vol. 54, no. 11/12, pp. 1481–1489.

    Article  Google Scholar 

  • Danilov, A.D. and Kalgin, Yu.A., Eddy diffusion studies in the lower thermosphere, Adv. Space Res., 1996, vol. 17, no. 11, pp. 17–24.

    Article  Google Scholar 

  • Danilov, A.D. and Kalgin, Yu.A., Determination of turbulence parameters at the heights of the lower thermosphere, Geomagn. Aeron., 1997, vol. 37, no. 1, pp. 143–144.

    Google Scholar 

  • Danilov, A.D. and Konstantinova, A.V., Behavior of parameters of the ionospheric F2 layer at the turn of the centuries: 1. Critical frequency, Geomagn. Aeron., 2013a, vol. 53, no. 3, pp. 345–355.

    Article  Google Scholar 

  • Danilov, A.D. and Konstantinova, A.V., Behavior of parameters of the ionospheric F2 layer at the edge of the centuries: 2. Height of the layer, Geomagn. Aeron., 2013b, vol. 53, no. 4, pp. 457–470.

    Article  Google Scholar 

  • Danilov, A.D. and Konstantinova, A.V., Relation between changes in foF2 and hmF2 within various time intervals, Geomagn. Aeron., 2013c, vol. 53, no. 5, pp. 629–634.

    Article  Google Scholar 

  • Danilov, A.D. and Smirnova, N.V., Long-term trends in the ion composition in the E region, Geomagn. Aeron., 1997, vol. 37, no. 4, pp. 422–425.

    Google Scholar 

  • Donaldson, J.K., Wellman, T.J., and Oliver, W.L., Longterm change in thermospheric temperature above Saint Santin, J. Geophys. Res., 2010, vol. 115, no. A11305. doi:10.1029/2010JA015346.

    Google Scholar 

  • Emmert, J.T., Thermospheric density climate and climate changes, Paper presented at 7th IAGA/ICMA/CAWSES Workshop on Long-Term Changes and Trends in the Atmosphere, 11–14 September, 2012, Buenos-Aires, Argentina.

  • Friedrich, M. and Torkar, K.M., Long-term trends and other residual features of the lower ionosphere, Proceedings of 15th ESA Symposium on European Rocket and Balloon Programs and Related Research, Biarritz, France, 28–31 May 2001 (ESA SP-471, August 2001).

  • Hierl, P.M., Dotan, I., Seeley, J.V., Van Doren, J.M., Morris, R.A., and Viggiano, A.A., Rate constants for the reactions of O+ with N2 and O2 as a function of temperature (300–1800 K), J. Chem. Phys., 1997, vol. 106, no. 9, pp. 3540–3544. doi:10.1063/1.473450.

    Article  Google Scholar 

  • Hoffmann, P., Latteck, R., Rapp, M., Singer, W., and Kumar, G.K., Trends and solar cycle variations of mesospheric winds and waves at northern middle and polar latitudes, Paper presented at 7th IAGA/ICMA/CAWSES Workshop on Long-Term Changes and Trends in the Atmosphere, 11–14 September, 2012, Buenos-Aires, Argentina.

  • Kalgin, Y.A., Dynamical aspect of long-term trend of the neutral atmosphere composition at turbopause region, Proceedings of International Workshop “Cooling and Sinking of the Middle and Upper Atmosphere”, Moscow, 1998, pp. 26–27.

  • Laštovička, J., Akmaev, R.A., Beig, G., Bremer, J., Emmert, J.T., Jacobi, C., Jarvis, M.J., Nedoluha, G., Portnyagin, Y.I., and Ulich, T., Emerging pattern of global change in the upper atmosphere and ionosphere, Ann. Geophys., 2008, vol. 26, no. 5, pp. 1255–1268.

    Article  Google Scholar 

  • Laštovička, J., Global pattern of trends in the upper atmosphere and ionosphere: Recent progress, J. Atmos. Sol.-Terr. Phys., 2009, vol. 71, pp. 1514–1528. doi:10.1016/j.jastp.20.09.01.010.

    Article  Google Scholar 

  • Laštovička, J., Križan, P., and Kozubek, M., Long-term trends in the middle atmosphere dynamics at northern middle latitudes-one regime or two different regimes?, Atmos. Chem. Phys. Discuss., 2010, vol. 10, no. 2, pp. 2633–2668. doi:10.5194/acpd-10-2633-2010

    Article  Google Scholar 

  • Laštovička, J., Solomon, S.C., and Qian, L., Trends in the neutral and ionized upper atmosphere, Space Sci. Rev., 2012, vol. 168, no. 1/4, pp. 113–145.

    Google Scholar 

  • Mikhailov, A.V., Trends in the ionospheric E-region, Phys. Chem. Earth, 2006, vol. 31, no. 1/3, pp. 22–23. doi:10.1016/j.pce.2005.02.005.

    Article  Google Scholar 

  • Mikhailov, A.V., Skoblin, M.G., and Foerster, M., Daytime F2-layer positive storm effect at middle and lower latitudes, Ann. Geophys., 1995, vol. 13, pp. 532–540. doi:10.1007/s00585-995-0532-y.

    Article  Google Scholar 

  • Pogoreltsev, A.I. and Savenkova, E.N., Changes in stratospheric dynamics caused by changes of propagation conditions of planetary waves, Paper presented at 7th IAGA/ICMA/CAWSES Workshop on Long-Term Changes and Trends in the Atmosphere, 11–14 September, 2012, Buenos-Aires, Argentina.

  • Pokhunkov, A.A., Rybin V.V., and Tulinov, G.F, Quantitative characteristics of long-term changes in parameters of the upper atmosphere of the Earth over the 1966–1992 period, Cos. Res., 2009, vol. 47, no. 6, pp. 480–490.

    Article  Google Scholar 

  • Portnyagin, Yu.I., Merzlyakov, E.G., Sokolova, T.V., Jacobi, T.V., Kurschner, D., Manson, A., and Meek, C., Long-term trends and year-to-year variability of midlatitude mesosphere/lower thermosphere winds, J. Atmos. Sol.-Terr. Phys., 2006, vol. 68, no. 17, pp. 1890–1901.

    Article  Google Scholar 

  • Qian, L., Burns, A.G., Solomon, S.C., and Roble, R.G., The effect of carbon dioxide cooling on trends in the F2-layer ionosphere, J. Atmos. Sol.-Terr. Phys., 2009, vol. 71, pp. 1592–1601. doi:10.1016/j.jastp.2009.03.006.

    Article  Google Scholar 

  • Qian, L., Laštovička, J., Roble, R., and Solomon, S., Progress in observations and simulations of global change in the upper atmosphere, J. Geophys. Res., 2011, vol. 116, no. A00H03. doi:10.1029/2010JA016317.

    Google Scholar 

  • Qian, L., Solomon, S.C., and Nossal, S., Impact of the middle atmosphere gas trends on the thermosphere, Paper presented at 7th IAGA/ICMA/CAWSES Workshop on Long-Term Changes and Trends in the Atmosphere, 11–14 September, 2012, Buenos-Aires, Argentina.

  • Richards, P.G., Reexamination of ionospheric photochemistry, J. Geophys. Res., 2011, vol. 116, no. A08307. doi:10.1029/2011JA016613.

    Google Scholar 

  • Rishbeth, H., A greenhouse effect in the ionosphere?, Planet. Space Sci., 1990, vol. 38, pp. 945–948.

    Article  Google Scholar 

  • Rishbeth, H. and Edwards, R., The isobaric F2-layer, J. Atmos. Terr. Phys., 1989, vol. 51, no. 4, pp. 321–338.

    Article  Google Scholar 

  • Roble, R.G. and Dickinson, R.E., How will changes in carbon dioxide and methane modify the mean structure of the mesosphere and thermosphere?, Geophys. Res. Lett., 1989, vol. 16, no. 12, pp. 1441–1444.

    Article  Google Scholar 

  • Smith, A.K., Marsh, D.R., Mlynczak, M.G., and Mast, J.C., Temporal variations of atomic oxygen in the upper mesosphere from SABER, J. Geophys. Res., 2010, vol. 115, no. D18309. doi:10.1029/2009JD013434.

    Google Scholar 

  • Solomon, S.C., Qian, L., Roble, R.G., and Mlynczak, M.G., On the discrepancy between observations and models of thermospheric climate change, Paper presented at 7th IAGA/ICMA/CAWSES Workshop on Long-Term Changes and Trends in the Atmosphere, 11–14 September, 2012, Buenos-Aires, Argentina.

  • Zhang, S.R. and Holt, J., Variability of the ionospheric temperature trend derived from incoherent scatter radar observations over Millstone Hill during 1968–2006, Paper presented at 7th IAGA/ICMA/CAWSES Workshop on Long-Term Changes and Trends in the Atmosphere, 11–14 September, 2012, Buenos-Aires, Argentina.

  • Zhang, S.R., Holt, J.M., and Kurdzo, J., Millstone Hill ISR observations of upper atmospheric long-term changes: Height dependency, J. Geophys. Res., 2011, vol. 116, no. A00H05. doi:10.1029/2010JA016414.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. D. Danilov.

Additional information

Original Russian Text © A.D. Danilov, A.V. Konstantinova, 2014, published in Geomagnetizm i Aeronomiya, 2014, Vol. 54, No. 2, pp. 239–245.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Danilov, A.D., Konstantinova, A.V. Reduction of the atomic oxygen content in the upper atmosphere. Geomagn. Aeron. 54, 224–229 (2014). https://doi.org/10.1134/S0016793214020066

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016793214020066

Keywords

Navigation