Skip to main content
Log in

Modeling of properties of the plasmasphere under quiet and disturbed conditions

  • Published:
Geomagnetism and Aeronomy Aims and scope Submit manuscript

Abstract

Based on theoretical models of the ionosphere and the plasmasphere, the ion composition variations in the plasmasphere and the plasmapause structure were studied depending on the choice of the distribution model of the magnetospheric convection electric field at low and high geomagnetic activity at the equinox and the December solstice. Based on the model calculations performed, the plasmapause shape and size during an increase and decrease in geomagnetic activity were studied. It was revealed that the size of the plasmasphere mainly depends on the magnetic local time (MLT) sector and the level of geomagnetic activity, and it greatly depends on the maximum universal time during the equinox. The Earth’s plasmasphere asymmetry is manifested in the noon-midnight and morning-evening directions. The analysis results of daily and seasonal variations in the ionic composition of the Earth’s plasmasphere at a moderate solar activity level show that there is a certain increase in the ion concentrations of H+ and He+ in the winter period probably due to an increase in the exospheric density at the summer to winter transition. The data obtained are in good agreement with satellite observations which makes it possible to use the model proposed to study the plasmasphere under different geophysical conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Carpenter, D.L., Whistler studies of the plasmapause in the magnetosphere. 1. Temporal variation in the position of the knee and some evidence on plasma motions near the knee, J. Geophys. Res., 1966, vol. 71, pp. 693–709.

    Article  Google Scholar 

  • Carpenter, D.L. and Anderson, R.R., An ISEE/whistler model of equatorial electron density in the magnetosphere, J. Geophys. Res., 1992, vol. 97A, pp. 1097–1108.

    Article  Google Scholar 

  • Carpenter, D.L., Giles, B.L., Chappell, C.R., Decreau, P.M.E., Anderson, R.R., Persoon, A.M., Smith, A.J., Corcuff, Y., and Canu, P., Plasmaspheric dynamics in the duskside bugle region: A new look at an old topic, J. Geophys. Res., 1993, vol. 98, pp. 19 243–19 271.

    Article  Google Scholar 

  • Darrouzet, F., Gallagher, D., André, N., et al., Plasmaspheric density structures and dynamics: Properties observed by the CLUSTER and IMAGE missions, Space Sci. Rev., 2009, vol. 145, no. 1, pp. 55–106.

    Article  Google Scholar 

  • Davies, K., Recent progress in satellite radio beacon studies with particular emphasis on the ATS-6 radio beacon experiment, Space Sci. Rev., 1980, vol. 25, no. 4, pp. 357–430.

    Article  Google Scholar 

  • Decreau, P.M.E., Beghin, C., and Parrot, M., Global characteristics of the cold plasma in the equatorial plasma-pause region as deduced from the GEOS 1 mutual impedance probe, J. Geophys. Res., 1982, vol. 87, pp. 695–712.

    Article  Google Scholar 

  • Drob, D.P., Emmert, J.T., Crowley, G., et al., An empirical model of the Earth’s horizontal wind fields: HWM07, J. Geophys. Res., 2008, vol. 113, p. A12304. 10.1029/2008JA013668

    Article  Google Scholar 

  • Emmert, J.T., Drob, D.P., Shepherd, G.G., Hernandez, G., Jarvis, M.J., Meriwether, J.W., Niciejewski, R.J., Sipler, D.P., and Tepley, C.A., DWM07 global empirical model of upper thermospheric storm-induced disturbance winds, J. Geophys. Res., 2008, vol. 113, p. A11319. 10.1029/2008JA013541

    Article  Google Scholar 

  • Gallagher, D.L., Craven, P.D., and Comfort, R.H., Global core plasma model, J. Geophys. Res., 2000, vol. 105A, pp. 18819–18833.

    Article  Google Scholar 

  • Hardy, D.A., Gussenhoven, M.S., Raistrick, R., and McNeil, W.J., Statistical and functional representation of the pattern of auroral energy flux, number flux, and conductivity, J. Geophys. Res., 1987, vol. 92A, pp. 12275–12294.

    Article  Google Scholar 

  • Kotova, G.A., The Earth’s plasmasphere: State of studies (a review), Geomagn. Aeron., 2007, vol. 47, pp. 409–422.

    Article  Google Scholar 

  • Krinberg, I.A. and Tashchilin, A.V., Ionosfera i plazmosfera (Ionosphere and Plasmasphere), Moscow: Nauka, 1984.

    Google Scholar 

  • Lemaire, J.F. and Gringauz, K.I., The Earth’s Plasmasphere Cambridge: Cambridge Univ. Press, 1998.

    Book  Google Scholar 

  • Millward, G.H., Moffett, R.J., Quegan, S., and Fuller-Rowell, T.J., A coupled thermosphere-ionosphere-plasmasphere model (CTIP), in Solar-Terrestrial Energy Program: Handbook of Ionospheric Models, 1996, pp. 239–280.

    Google Scholar 

  • Namgaladze, A.A., Koren’kov, Yu.N., Klimenko, V.V., Karpov, I.V., Bessarab, F.S., Sirotkin, V.A., Glushchenko, T.A., and Naumova, N.M., Global numerical model of the Earth’s thermosphere, ionosphere, and protonosphere, Geomagn. Aeron., 1990, vol. 30, no. 4, pp. 612–619.

    Google Scholar 

  • Park, C.G., Carpenter, D.L., and Wiggin, D.B., Electron density in the plasmasphere: Whistler data on solar cycle, annual, and diurnal variations, J. Geophys. Res., 1978, vol. 83, no. A7, pp. 3137–3144.

    Article  Google Scholar 

  • Pavlov, A.V., Hydrodynamic description of ionospheric plasma, in Entsiklopediya nizkotemperaturnoi plazmy (Low-Temperature Plasma Encyclopedia), Moscow: Yanus-K, 2008, Ser. B, vol. 1, pp. 36–71.

    Google Scholar 

  • Picone, J.M., Hedin, A.E., Drob, D.P., and Aikin, A.C., NRLMSISE-00 empirical model of the atmosphere: Statistical comparisons and scientific issues, J. Geophys. Res., 2002, vol. 107A, pp. 1468–1483.

    Article  Google Scholar 

  • Richards, P.G. and Torr, D.G., The field line interhemispheric plasma model, in Solar-Terrestrial Energy Program: Handbook of Ionospheric Models, 1996, pp. 207–216.

    Google Scholar 

  • Richards, P.G., Fennelly, J.A., and Torr, D.G., EUVAC: A solar EUV flux model for aeronomic calculations, J. Geophys. Res., 1994, vol. 99A, pp. 8981–8992.

    Article  Google Scholar 

  • Rycroft, M.J., A review of in situ observations of the plasmapause, Ann. Geophys., 1975, vol. 31, pp. 1–16.

    Google Scholar 

  • Singh, A.K., Singh, R.P., and Siingh Devendraa, State studies of Earth’s plasmasphere: A review, Planet. Space Sci., 2011, vol. 59, no. 9, pp. 810–834.

    Article  Google Scholar 

  • Sojka, J.J., Rasmussen, C.E., and Schunk, R.W., An interplanetary magnetic field dependent model of the ionospheric convection electric field, J. Geophys. Res., 1986, vol. 91, pp. 11 281–11 290.

    Article  Google Scholar 

  • Tashchilin, A.V. and Romanova, E.B., Numerical modeling the high-latitude ionosphere, Proc. COSPAR Colloquia Ser., 2002, vol. 14, pp. 315–325.

    Article  Google Scholar 

  • Thomsen, M.F., McComas, D.J., Borovsky, J.E., and Elphic, R.C., The magnetospheric trough. Geospace mass and energy flow: Results from the international solar-terrestrial physics program, Am. Geophys. Union, 1998, vol. 104, pp. 355–369.

    Google Scholar 

  • Torr, D.G. and Torr, M.R., Chemistry of the thermosphere and ionosphere, J. Atmos. Terr. Phys., 1979, vol. 41, no. 7–8, pp. 797–849.

    Article  Google Scholar 

  • Tu, J., Song, P., Reinisch, B.W., Green, J.L., and Huang, X., Empirical specification of field-aligned plasma density profiles for plasmasphere refilling, J. Geophys. Res., 2006, vol. 11, p. A06216. 10.1029/2005JA011582

    Google Scholar 

  • Webb, P.A. and Essex, E.A., A dynamic global model of the plasmasphere, J. Atmos. Solar-Terr. Phys., 2004, vol. 66, no. 12, pp. 1057–1073.

    Article  Google Scholar 

  • Weimer, D.R., Models of high-latitude electric potentials derived with a least error fit of spherical harmonic coefficients, J. Geophys. Res., 1995, vol. 100, pp. 19595–19607.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Tashchilin.

Additional information

Original Russian Text © A. V. Tashchilin, E. B.Romanova, 2014, published in Geomagnetizm i Aeronomiya, 2014, Vol. 54, No. 1, pp. 13–22.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tashchilin, A.V., Romanova, E.B. Modeling of properties of the plasmasphere under quiet and disturbed conditions. Geomagn. Aeron. 54, 11–19 (2014). https://doi.org/10.1134/S0016793214010150

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016793214010150

Keywords

Navigation