Skip to main content
Log in

Spatiotemporal sunspot impulses and reversal of the polar magnetic field on the sun

  • Published:
Geomagnetism and Aeronomy Aims and scope Submit manuscript

Abstract

The spatiotemporal organization of sunspots in the form of activity impulses (according to Gnevyshev’s terminology) is considered as a source of poleward magnetic surges of new polarity. Polar fields in the northern and southern hemispheres have been reconstructed from 1875 to 2012. An increase in the tilt angle of magnetic bipoles with latitude is a crucial parameter in the proposed model to reverse the polar field on the Sun. The role of the surface meridional flow forming magnetic surges of new and old polarities is discussed. It is shown that the velocity and the latitudinal profile of the flow influence the modeled polar field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baumann, I., Schmitt, D., Schussler, M., and Solanki, S.K., Evolution of the large-scale magnetic field on the solar surface: A parameter study, Astron. Astrophys., 2004, vol. 426, pp. 1075–1091.

    Article  Google Scholar 

  • Charbonneau, P., Dynamo models of the solar cycle, Living Rev. Solar Phys., 2010, vol. 7, no. 3, p. 91.

    Google Scholar 

  • DeVore, C.R. and Sheeley, N., Jr., Simulations of the Sun’s polar magnetic fields during sunspot cycle 21, Solar Phys., 1987, vol. 108, pp. 47–59.

    Article  Google Scholar 

  • Dikpati, M., Gilman, P.A., and Ulrich, R.K., Physical origin of differences among various measures of solar meridional circulation, Astrophys. J., 2010, vol. 722, pp. 774–778.

    Article  Google Scholar 

  • Hale, G.E., Ellerman, F., Nicholson, S.B., and Joy, A.H., The magnetic polarity of sun-spots, Astrophys. J., 1919, vol. 49, pp. 153–178.

    Article  Google Scholar 

  • Hathaway, D.H., The solar cycle, Living Rev. Solar Phys., 2010, vol. 7, no. 1, p. 65.

    Google Scholar 

  • Hathaway, D.H. and Rightmire, L., Variations in the axisymmetric transport of magnetic elements on the Sun: 1996–2010, Astrophys. J., 2011, vol. 729, no. 2, p. 80. doi10.1088/0004-637X/729/2/80

    Article  Google Scholar 

  • Hoeksema, J.T., The large-scale structure of the heliospheric current sheet during the ULYSSES epoch, Space Sci. Rev., 1995, vol. 72, no. 1–2, pp. 137–148.

    Article  Google Scholar 

  • Jiang, J., Cameron, R.H., Schmitt, D., and Schüssler, M., Can surface flux transport account for the weak polar field in cycle 23? Space Sci. Rev., 2011, p. 136. doi10.1007/s11214-011-9783-y

    Google Scholar 

  • Leighton, R.B., Transport of magnetic fields on the Sun, Astrophys. J., 1964, vol. 140, pp. 1540–1562.

    Google Scholar 

  • Mackay, D.H., Magnetic flux transport simulations of solar surface magnetic distributions during a Grand minimum, Solar Phys., 2003, vol. 213, no. 1, pp. 173–193.

    Article  Google Scholar 

  • Makarov, V.I. and Makarova, V.V., Polar faculae and sunspot cycles, Solar Phys., 1996, vol. 163, no. 2, pp. 267–289.

    Google Scholar 

  • Nandy, D., Muñoz-Jaramillo, A., and Martens, P.C.H., The unusual minimum of sunspot cycle 23 caused by meridional plasma flow variations, Nature, 2011, vol. 471, no. 7336, pp. 80–82.

    Article  Google Scholar 

  • Schrijver, C.J. and Liu, Y., The global solar magnetic field through a full sunspot cycle: Observations and model results, Solar Phys., 2008, vol. 252, no. 1, pp. 19–31.

    Article  Google Scholar 

  • Schrijver, C.J. and Title, A.M., On the formation of polar spots in sun-like stars, Astrophys. J., 2001, vol. 551, no. 2, pp. 1099–1106.

    Article  Google Scholar 

  • Tang, F., Howard, R., and Adkins, J.M., A statistical study of active regions 1967–1981, Solar Phys., 1984, vol. 91, pp. 75–86.

    Google Scholar 

  • Van Ballegooijen, A.A., Cartledge, N.P., and Priest, E.R., Magnetic flux transport and the formation of filament channels on the Sun, Astrophys. J., 1998, vol. 501, pp. 866–881.

    Article  Google Scholar 

  • Wang, Y.-M., Nash, A.G., and Sheeley, N.R., Jr., Evolution of the Sun’s polar fields during sunspot cycle 21 poleward surges and long-term behavior, Astrophys. J., 1989, vol. 347, pp. 529–539.

    Article  Google Scholar 

  • Wang, Y.-M., Robbrecht, E., and Sheeley, N.R., Jr., On the weakening of the polar magnetic fields during solar cycle 23, Astrophys. J., 2009, vol. 707, no. 2, p. 1372. doi10.1088/0002-637X/707/2/1372

    Article  Google Scholar 

  • Zolotova, N.V. and Ponyavin, D.I., Nature of the unusually long solar cycles, Proc. Int. Astronomical Union. Symposium, Chouldhary, D.P. and Strassmeier, K.G., Eds., Cambridge, 2011, vol. 273, pp. 169–173.

    Google Scholar 

  • Zolotova, N.V. and Ponyavin, D.I., Spatial-time clusters of sunspots and solar polar magnetic field reversal, Trudy Vserossiiskoi ezhegodnoi pulkovskoi konferentsii po fizike Solntsa “Solnechnaya i solnechno-zemnaya fizika (Proc. All-Russia Annual Pulkovo Conference on Solar Physics “Solar and Solar-Terrestrial Physics”), 2012a, pp. 47–50.

    Google Scholar 

  • Zolotova, N.V. and Ponyavin, D.I., Impulse-like behavior of the sunspot activity, Astron. Rep., 2012b, vol. 56, no. 3, pp. 250–255.

    Article  Google Scholar 

  • Zolotova, N.V. and Ponyavin, D.I., Reconstruction of magnetic field surges to the poles from sunspot impulses, Proc. Int. Astronomical Union. IAU Symposium, Mandrini, C.H. and Webb, D.F., Eds., Cambridge, 2012c, vol. 286, pp. 88–92.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Zolotova.

Additional information

The article was translated by the authors.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zolotova, N.V., Ponyavin, D.I. Spatiotemporal sunspot impulses and reversal of the polar magnetic field on the sun. Geomagn. Aeron. 53, 945–948 (2013). https://doi.org/10.1134/S0016793213080276

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016793213080276

Keywords

Navigation