Geomagnetism and Aeronomy

, Volume 53, Issue 8, pp 945–948 | Cite as

Spatiotemporal sunspot impulses and reversal of the polar magnetic field on the sun

  • N. V. Zolotova
  • D. I. Ponyavin


The spatiotemporal organization of sunspots in the form of activity impulses (according to Gnevyshev’s terminology) is considered as a source of poleward magnetic surges of new polarity. Polar fields in the northern and southern hemispheres have been reconstructed from 1875 to 2012. An increase in the tilt angle of magnetic bipoles with latitude is a crucial parameter in the proposed model to reverse the polar field on the Sun. The role of the surface meridional flow forming magnetic surges of new and old polarities is discussed. It is shown that the velocity and the latitudinal profile of the flow influence the modeled polar field.


Tilt Angle Polar Field Sunspot Group Sunspot Cycle Meridional Flow 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baumann, I., Schmitt, D., Schussler, M., and Solanki, S.K., Evolution of the large-scale magnetic field on the solar surface: A parameter study, Astron. Astrophys., 2004, vol. 426, pp. 1075–1091.CrossRefGoogle Scholar
  2. Charbonneau, P., Dynamo models of the solar cycle, Living Rev. Solar Phys., 2010, vol. 7, no. 3, p. 91.Google Scholar
  3. DeVore, C.R. and Sheeley, N., Jr., Simulations of the Sun’s polar magnetic fields during sunspot cycle 21, Solar Phys., 1987, vol. 108, pp. 47–59.CrossRefGoogle Scholar
  4. Dikpati, M., Gilman, P.A., and Ulrich, R.K., Physical origin of differences among various measures of solar meridional circulation, Astrophys. J., 2010, vol. 722, pp. 774–778.CrossRefGoogle Scholar
  5. Hale, G.E., Ellerman, F., Nicholson, S.B., and Joy, A.H., The magnetic polarity of sun-spots, Astrophys. J., 1919, vol. 49, pp. 153–178.CrossRefGoogle Scholar
  6. Hathaway, D.H., The solar cycle, Living Rev. Solar Phys., 2010, vol. 7, no. 1, p. 65.Google Scholar
  7. Hathaway, D.H. and Rightmire, L., Variations in the axisymmetric transport of magnetic elements on the Sun: 1996–2010, Astrophys. J., 2011, vol. 729, no. 2, p. 80. doi10.1088/0004-637X/729/2/80CrossRefGoogle Scholar
  8. Hoeksema, J.T., The large-scale structure of the heliospheric current sheet during the ULYSSES epoch, Space Sci. Rev., 1995, vol. 72, no. 1–2, pp. 137–148.CrossRefGoogle Scholar
  9. Jiang, J., Cameron, R.H., Schmitt, D., and Schüssler, M., Can surface flux transport account for the weak polar field in cycle 23? Space Sci. Rev., 2011, p. 136. doi10.1007/s11214-011-9783-yGoogle Scholar
  10. Leighton, R.B., Transport of magnetic fields on the Sun, Astrophys. J., 1964, vol. 140, pp. 1540–1562.Google Scholar
  11. Mackay, D.H., Magnetic flux transport simulations of solar surface magnetic distributions during a Grand minimum, Solar Phys., 2003, vol. 213, no. 1, pp. 173–193.CrossRefGoogle Scholar
  12. Makarov, V.I. and Makarova, V.V., Polar faculae and sunspot cycles, Solar Phys., 1996, vol. 163, no. 2, pp. 267–289.Google Scholar
  13. Nandy, D., Muñoz-Jaramillo, A., and Martens, P.C.H., The unusual minimum of sunspot cycle 23 caused by meridional plasma flow variations, Nature, 2011, vol. 471, no. 7336, pp. 80–82.CrossRefGoogle Scholar
  14. Schrijver, C.J. and Liu, Y., The global solar magnetic field through a full sunspot cycle: Observations and model results, Solar Phys., 2008, vol. 252, no. 1, pp. 19–31.CrossRefGoogle Scholar
  15. Schrijver, C.J. and Title, A.M., On the formation of polar spots in sun-like stars, Astrophys. J., 2001, vol. 551, no. 2, pp. 1099–1106.CrossRefGoogle Scholar
  16. Tang, F., Howard, R., and Adkins, J.M., A statistical study of active regions 1967–1981, Solar Phys., 1984, vol. 91, pp. 75–86.Google Scholar
  17. Van Ballegooijen, A.A., Cartledge, N.P., and Priest, E.R., Magnetic flux transport and the formation of filament channels on the Sun, Astrophys. J., 1998, vol. 501, pp. 866–881.CrossRefGoogle Scholar
  18. Wang, Y.-M., Nash, A.G., and Sheeley, N.R., Jr., Evolution of the Sun’s polar fields during sunspot cycle 21 poleward surges and long-term behavior, Astrophys. J., 1989, vol. 347, pp. 529–539.CrossRefGoogle Scholar
  19. Wang, Y.-M., Robbrecht, E., and Sheeley, N.R., Jr., On the weakening of the polar magnetic fields during solar cycle 23, Astrophys. J., 2009, vol. 707, no. 2, p. 1372. doi10.1088/0002-637X/707/2/1372CrossRefGoogle Scholar
  20. Zolotova, N.V. and Ponyavin, D.I., Nature of the unusually long solar cycles, Proc. Int. Astronomical Union. Symposium, Chouldhary, D.P. and Strassmeier, K.G., Eds., Cambridge, 2011, vol. 273, pp. 169–173.Google Scholar
  21. Zolotova, N.V. and Ponyavin, D.I., Spatial-time clusters of sunspots and solar polar magnetic field reversal, Trudy Vserossiiskoi ezhegodnoi pulkovskoi konferentsii po fizike Solntsa “Solnechnaya i solnechno-zemnaya fizika (Proc. All-Russia Annual Pulkovo Conference on Solar Physics “Solar and Solar-Terrestrial Physics”), 2012a, pp. 47–50.Google Scholar
  22. Zolotova, N.V. and Ponyavin, D.I., Impulse-like behavior of the sunspot activity, Astron. Rep., 2012b, vol. 56, no. 3, pp. 250–255.CrossRefGoogle Scholar
  23. Zolotova, N.V. and Ponyavin, D.I., Reconstruction of magnetic field surges to the poles from sunspot impulses, Proc. Int. Astronomical Union. IAU Symposium, Mandrini, C.H. and Webb, D.F., Eds., Cambridge, 2012c, vol. 286, pp. 88–92.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  1. 1.St. Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations