Skip to main content
Log in

Influence of the atmospheric surface layer on the penetration of the electric field from the earth’s surface into the ionosphere

  • Published:
Geomagnetism and Aeronomy Aims and scope Submit manuscript

Abstract

In the used model, the quasistationary electric field in the atmosphere of the Earth is obtained by solving the conductivity equation. The penetration characteristics of the electric field from the Earth’s surface into the ionosphere depend on both atmospheric and ionosphere conductivity. The ionosphere is taken into account by setting a special condition on the upper boundary of the atmosphere. The influence of the atmospheric surface layer with a reduced conductivity on the penetration of the electric field from the surface of the Earth into the ionosphere is analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alekseev, A.S. and Aksenov, V.V., On the electric field in the earthquake epicenter zone, Dokl. Akad. Nauk, 2003, vol. 392, no. 1, pp. 106–110.

    Google Scholar 

  • Denisenko, V.V., Boudjada, M.Y., Horn, M., Pomozov, E.V., Biernat, H.K., Schwingenschuh, K., Lammer, H., Prattes, G., and Cristea, E., Ionospheric conductivity effects on electrostatic field penetration into the ionosphere, Nat. Hazards Earth Syst. Sci., 2008, vol. 8, pp. 1009–1017.

    Article  Google Scholar 

  • Dobrovol’skii, I.P., Zubkov, S.I., and Myachkin, V.I., On the estimation of the dimensions of the zone where earthquake precursors are registered, in Modelirovanie predvestnikov zemletryasenii (Earthquake Precursor Simulation), Moscow: Nauka, 1980, pp. 7–44.

    Google Scholar 

  • Freund, F.T., Kulahci, I.G., Cyr, G., Ling, J., Winnick, M., Tregloan-Reed, J., and Freund, M.M., Air ionizationat rock surfaces and pre-earthquake signals, J. Atmos. Solar-Terr. Phys., 2009, vol. 71, pp. 1824–1834.

    Article  Google Scholar 

  • Gershman, B.N., Dinamika ionosfernoi plazmy (Ionospheric Plasma Dynamics), Moscow: Nauka, 1974.

    Google Scholar 

  • Gokhberg, M.B., Pilipenko, V.A., and Pokhotelov, O.A., On seismic precursors in the ionosphere, Izv. Akad. Nauk SSSR, Fiz. Zemli, 1983, no. 10, pp. 17–21.

    Google Scholar 

  • Gokhberg, M.B., Gershenzon, N.I., Gufel’d, I.L., Kustov, A.V., Liperovsky, V.A., and Khusamiddinov, S.S., On the possible effects of seismic electric fields on the ionosphere, Geomagn. Aeron., 1984, vol. 24, no. 2, pp. 217–222.

    Google Scholar 

  • Gousheva, M., Danov, D., Hristov, P., and Matova, M., Quasi-static electric fields phenomena in the ionosphere associated with pre- and post earthquake effects, Nat. Hazards Earth Syst. Sci., 2008, vol. 8, pp. 101–107.

    Article  Google Scholar 

  • Kelley, M.C. and Mozer, F.S., A satellite survey of vector electric fields in the ionosphere at frequencies of 10 to 500 Hertz, ionospheric turbulence, J. Geophys. Res., 1972, vol. 77, no. 22, p. 4183.

    Article  Google Scholar 

  • Kim, V.P., Khegai, V.V., and Illich-Svitych, P.V., On the possible ionospheric precursor of earthquakes, Fiz. Zemli, 1994, vol. 8, no. 3, pp. 37–40.

    Google Scholar 

  • Kondo, G., The variation of the atmospheric electric field at the time of earthquake, Mem. Kakioka Magn. Obs., 1968, no. 13, pp. 11–23.

    Google Scholar 

  • Korn, G.A. and Korn, T.M., Mathematical Handbook for Scientists and Engineers, New York: McGraw-Hill, 1968.

    Google Scholar 

  • Molchanov, O.A. and Hayakawa, M., Generation of ULF seismogenic electromagnetic emission: A natural consequence of microfracturing process, in Electromagnetic Phenomena Related to Earthquake Prediction, Hayakawa M. and Fujinawa, Y., Eds. Tokyo: Terra Sci. Publ., 1994, pp. 537–563.

    Google Scholar 

  • Molchanov, O. and Hayakawa, M., Seismo-electromagnetics and related phenomena: History and latest results, Tokyo: TERRAPUB, 2008.

    Google Scholar 

  • Morgunov, V.A. and Maltsev, S.A., Model of a quasi-stationary lithospheric electric field, in Sb. trudov Pyatoi Rossiiskoi konf. po atmosfernomu elektrichestvu (Proc. 5th Russian Conf. on Atmospheric Electricity), Grunskaya, L.V, Shchukin, G.G, and Shvarts, Ya.M, Eds., Vladimir: Tranzit IKS, 2003, vol. 2, pp. 59–61.

    Google Scholar 

  • Park, C.G. and Dejnakarintra, M., Penetration of thunder-cloud electric fields into the ionosphere and magnetosphere. 1. Middle and auroral latitudes, J. Geophys. Res., 1973, vol. 84, no. 1, pp. 960–964.

    Google Scholar 

  • Parrot, M., Use of satellites to detect seismo-electromagnetic effects, Adv. Space Res., 1995, vol. 15, no. 11, pp. 27–35.

    Article  Google Scholar 

  • Pulinets, S.A., Ionospheric precursors of earthquakes: Recent advances in theory and practical applications, TAO, 2004, vol. 15, no. 3, pp. 413–435.

    Google Scholar 

  • Pulinets, S.A. and Boyarchuk, K., Ionospheric precursors of earthquakes, New York: Springer, 2004.

    Google Scholar 

  • Pulinets, S.A., Kim, V.P., Hegai, V.V., and Depuev, V.Kh., Unusual longitude modification of the night-time mid-latitude F2 region ionosphere in July 1980 over the array of tectonic faults in the Andes area: Observations and interpretation, Geophys. Res. Lett., 1998, vol. 25, no. 22, pp. 4133–4136.

    Article  Google Scholar 

  • Pulinets, S.A., Legen’ka, A.D., Gaivoronskaya, T.V., and Depuev, V.K., Main phenomenological features of ionospheric precursors of strong earthquakes, J. Atmos. Solar-Terr. Phys., 2003, vol. 65, pp. 1337–1347.

    Article  Google Scholar 

  • Rapoport, Yu.G., Gotynyan, O.E., Ivchenko, V.N., Hayakawa, M., Grimalsky, V.V., Koshevaya, S.V., and Juarez, R.D., Modeling electrostatic-photochemistry seismoionospheric coupling in the presence of external currents, Phys. Chem. Earth, 2006, vol. 31, pp. 437–446.

    Article  Google Scholar 

  • Smirnov, S.E., Characteristics of negative anomalies in the quasistatic electric field in the near-Earth atmosphere on Kamchatka, Geomagn. Aeron., 2005, vol. 45, pp. 265–269.

    Google Scholar 

  • Sorokin, V.M., Chmyrev, V.M., and Yaschenko, A.K., Theoretical model of DC electric field formation in the ionosphere stimulated by seismic activity, J. Atmos. Solar-Terr. Phys., 2005, vol. 67, pp. 1259–1268.

    Article  Google Scholar 

  • Spravochnik po geofizike (Handbook of Geophysics), Moscow: Nauka, 1965.

  • Vershinin, E.F., Buzevich, A.V., Yumoto, K., Saita, K., and Tanaka, Y., Correlation of seismic activity with electromagnetic emissions and variations in Kamchatka region, in Atmospheric and Ionospheric Electromagnetic Phenomena Associated with Earthquakes, Tokyo: TERRAPUB, 1999, pp. 513–517.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Pomozov.

Additional information

Original Russian Text © E. V. Pomozov, 2014, published in Geomagnetizm i Aeronomiya, 2014, Vol. 54, No. 1, pp. 134–141.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pomozov, E.V. Influence of the atmospheric surface layer on the penetration of the electric field from the earth’s surface into the ionosphere. Geomagn. Aeron. 54, 127–134 (2014). https://doi.org/10.1134/S0016793213060121

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016793213060121

Keywords

Navigation