Skip to main content
Log in

Mechanism by which frontal structures in the ionospheric sporadic E layers are formed

  • Published:
Geomagnetism and Aeronomy Aims and scope Submit manuscript

Abstract

A mechanism by which frontal structures in the ionospheric E region are formed, based on the Ekman-type instability in the neutral component of a weakly ionized ionospheric plasma, when it is important to take into account large-scale wind helicity and neutral component turbulence, is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Babenko, K.I., Osnovy chislennogo analiza (Numerical Analysis Backgrounds), Moscow: R&C Dynamics, 2002.

    Google Scholar 

  • Bernhardt, P.A., The Modulation of Sporadic-E Layers by Kelvin-Helmholtz Billows in the Neutral Atmosphere, J. Atmos. Sol.-Terr. Phys., 2002, vol. 64, nos. 12–14, pp. 1487–1504.

    Article  Google Scholar 

  • Bowman, G.G., Some Aspects of Sporadic E at Mid-Latitudes, Planet. Space Sci., 1960, vol. 2, no. 4, pp. 195–202.

    Article  Google Scholar 

  • Bowman, G.G., Movements of Ionospheric Irregularities and Gravity Waves, J. Atmos. Terr. Phys., 1968, vol. 30, no. 5, pp. 721–724.

    Article  Google Scholar 

  • Bowman, G.G., Some Aspects of Mid-Latitude Spread-Es and Its Relationship with Spread F, Planet. Space Sci., 1985, vol. 33, no. 9, pp. 1081–1089.

    Article  Google Scholar 

  • Bowman, G.G., Quasi-Periodic Scintillations at Midlatitudes and Their Possible Association with Ionospheric Sporadic E Structures, Ann. Geophys., 1989, vol. 7, no. 3, pp. 259–267.

    Google Scholar 

  • Chkhetiani, O.G., On the Spiral Structure of the Ekman Boundary Layer, Fiz. Atmos. Okeana, 2001, vol. 37, no. 5, pp. 614–620.

    Google Scholar 

  • Chkhetiani, O.G. and Shalimov, S.L., Spirality in the Upper Atmosphere and Ekman-Type Instabilities, Dokl. Akad. Nauk, 2010, vol. 431, no. 1, pp. 113–118.

    Google Scholar 

  • Cosgrove, R.B., Generation of Mesoscale F Layer Structure and Electric Fields by the Combined Perkins and Es Layer Instabilities, in Simulations, Ann. Geophys., 2007, vol. 25, no. 7, pp. 1579–1601.

    Article  Google Scholar 

  • Cosgrove, R.B. and Tsunoda, R.T., A Direction-Dependent Instability of Sporadic-E Layers in the Nighttime Midlatitude Ionosphere, Geophys. Res. Lett., 2002, vol. 29, no. 18, p. 4.

    Article  Google Scholar 

  • Cosgrove, R.B. and Tsunoda, R.T., Coupling of the Perkins Instability and the Sporadic-E Layer Instability Derived from Physical Arguments, J. Geophys. Res., 2004, vol. 109A, pp. A06301.1–A06301.11.

    Google Scholar 

  • Dokuchaev, V.P., On the Effect of the Geomagnetic Field on Ionospheric Winds, Izv. Akad. Nauk SSSR, Ser. Geofiz., 1959, no. 5, pp. 783–787.

    Google Scholar 

  • Fritts, D.C., Bizon, C., Werne, J.A., and Meyer, C.K., Layering Accompanying Turbulence Generation Due to Shear Instability and Gravity-Wave Breaking, J. Geophys. Res., 2003, vol. 108D, p. 8452.

    Article  Google Scholar 

  • Goodwin, G.L., The Dimensions of Some Horizontally Moving Es-Region Irregularities, Planet. Space Sci., 1966, vol. 14, no. 8.

    Google Scholar 

  • Goodwin, G.L. and Summers, R.N., Es-Layer Characteristics Determined from Spaced Ionosondes, Planet. Space Sci., 1970, vol. 18, no. 10, pp. 1417–1432.

    Article  Google Scholar 

  • Haldoupis, C., Bourdillon, A., Kamburelis, A., Hussey, G.C., and Koehler, J.A., 50 MHz Continuous Wave Interferometer Observations of the Unstable Midlatitude E Region Ionosphere, Ann. Geophys., 2003a, vol. 21, no. 7, pp. 1589–1600.

    Article  Google Scholar 

  • Haldoupis, C., Kelley, M.C., Hussey, G.C., and Shalimov, S., Role of Unstable Sporadic-E Layers in the Generation of Midlatitude Spread-F, J. Geophys. Res., 2003b, vol. 108, no. A12, p. 1446.

    Article  Google Scholar 

  • Hocking, W.K., The Dynamical Parameters of Turbulence Theory as They Apply to Middle Atmosphere Studies, Earth Planet. Space, 1999, vol. 51, no. 7/8, pp. 525–541.

    Google Scholar 

  • Hurd, L., Larsen, M., and Liu, A., Overturning Instability in the Mesosphere and Lower Thermosphere: Analysis of Instability Conditions in Lidar Data, Ann. Geophys., 2009, vol. 27, no. 7, pp. 2937–2945.

    Article  Google Scholar 

  • Hysell, D., Larsen, M., and Zhou, Q., Common Volume Coherent and Incoherent Scatter Radar Observations of Midlatitude Sporadic E Layers and QP Echoes, Ann. Geophys., 2004, vol. 22, no. 9, pp. 3277–3290.

    Article  Google Scholar 

  • Khantadze, A.G., On Vertical Variations in the Wind Velocity and Direction in a Turbulent Conductive Atmosphere, Geomagn. Aeron., 1968, vol. 8, no. 2, pp. 236–249.

    Google Scholar 

  • Koprov, B.M., Koprov, V.M., Ponomarev, V.M., and Chkhetiani, O.G., Variation in Turbulent Spirality and Its Spectrum in the Atmospheric Boundary Layer, Dokl. Akad. Nauk, 2005, vol. 403, no. 5, pp. 41–44.

    Google Scholar 

  • Krauze, F. and Raedler, K.-H., Magnitnaya gidrodinamika srednikh polei i teoriya dynamo (Magnetic Hydrodynamics of Mean Fields and the Dynamo Theory), Moscow: Mir, 1984.

    Google Scholar 

  • Larsen, M.F., A Shear Instability Seeding Mechanism for Quasiperiodic Radar Echoes, J. Geophys. Res., 2000, vol. 105A, pp. 24 931–24 940.

    Google Scholar 

  • Larsen, M.F., Winds and Shears in the Mesosphere and Lower Thermosphere: Results from Four Decades of Chemical Release Wind Measurements, J. Geophys. Res., 2002, vol. 107A, pp. SIA 28-1–28-29.

    Google Scholar 

  • Larsen, M.F., Liu, A.Z., Gardner, C.S., Kelley, M.C., Collins, S., Friedman, J., and Hecht, J.H., Observations of Overturning in the Upper Mesosphere and Lower Thermosphere, J. Geophys. Res., 2004, vol. 109D, pp. D02S04.1–D02S04.9.

    Google Scholar 

  • Larsen, M.F., Hysell, D.L., Zhou, Q.H., Smith, S.M., Friedman, J., and Bishop, R.L., Imaging Coherent Scatter Radar, Incoherent Scatter Radar, and Optical Observations of Quasiperiodic Structures Associated with Sporadic E Layers, J. Geophys. Res., 2007, vol. 112A, pp. A06321.1–A06321.12.

    Google Scholar 

  • Lilly, D.K., On the Instability of Ekman Boundary Flow, J. Atmos. Sci., 1966, vol. 23, no. 5, pp. 481–494.

    Article  Google Scholar 

  • Ogawa, T., Yamamoto, M., and Fukao, S., Middle and Upper Atmosphere Radar Observations of Turbulence and Movement of Midlatitude Sporadic E Irregularities, J. Geophys. Res., 1995, vol. 100A, pp. 12173–12188.

    Article  Google Scholar 

  • Ogawa, T., Otsuka, Y., Onoma, F., Shiokawa, K., and Yamamoto, M., The First Coorninated Observations of Mid-Latitude E Region Quasi-Periodic Radar Echoes and Lower Thermospheric 557.7-nm Airglow, Ann. Geophys., 2005, vol. 23, no. 7, pp. 2391–2399.

    Article  Google Scholar 

  • Otsuka, Y., Onoma, F., Shiokawa, K., Ogawa, T., Yamamoto, M., and Fukao, S., Simultaneous Observations of Nighttime Medium-Scale Traveling Ionospheric Disturbances and E Region Field-Aligned Irregularities at Midlatitude, J. Geophys. Res., 2007, vol. 112A, pp. A06317.1–A06317.9.

    Google Scholar 

  • Perkins, F., Spread F and Ionospheric Currents, J. Geophys. Res., 1973, vol. 78, no. 1, pp. 218–226.

    Article  Google Scholar 

  • Ponomarev, V.M., Khapaev, A.A., and Chkhetiani, O.G., Role of Spirality in the Formation of the Secondary Structures in the Ekman Boundary Layer, Fiz. Atmos. Okeana, 2003, vol. 39, no. 4, pp. 435–444.

    Google Scholar 

  • Ponomarev, V.M., Chkhetiani, O.G., and Shestakova, L.V., Nonlinear Dynamics of Large-Scale Vortex Structures in a Turbulent Ekman Layer, Mekh. Zhidk. Gaza, 2007, vol. 42, no. 4, pp. 72–82.

    Google Scholar 

  • Rosenberg, N., Dynamic Model of Ionospheric Wind Profiles, J. Geophys. Res., 1968, vol. 73, no. 15, pp. 4965–4968.

    Article  Google Scholar 

  • Shalimov, S. and Yamamoto, M., Influence of Mid-Latittude Sporadic E Layer Patches upon the F Region Plasma Density, J. Geophys. Res., 2010, vol. 115, pp. A05309.1–A05309.7.

    Article  Google Scholar 

  • Shalimov, S., Ogawa, T., and Otsuka, Y., On the Gravity Wave-Driven Instability of E Layer at Mid-Latitude, J. Atmos. Sol.-Terr. Phys., 2009, vol. 71, no. 17/18, pp. 1943–1947.

    Article  Google Scholar 

  • Sinno, K., Ouchi, C., and Nemoto, C., Structure and Movement of Es Detected by LORAN Observations, J. Geomagn. Geoelectr., 1964, vol. 16, no. 2, pp. 75–88.

    Article  Google Scholar 

  • Sinno, K., Ouchi, C., Nemoto, C., and Futagawa, H., Structure and Movement of Es Detected by LORAN Observations (Loran Detection of Structure, Movement and Slanted in Sporadic E Region as Measured at Several Stations), J. Radio Res. Lab., 1965, vol. 12, no. 59, pp. 59–63.

    Google Scholar 

  • Sinno, K., Kan, M., and Hirukawa, Y., Reflection and Transmission Losses for Ionospheric Radiowave Propagation via Sporadic E, J. Radio Res. Lab., 1976, vol. 23, no. 110, pp. 65–84.

    Google Scholar 

  • Tsunoda, R.T. and Cosgrove, R.B., Coupled Electrodynamics in the Nighttime Midlatitude Ionosphere, Geophys. Res. Lett., 2001, vol. 28, no. 22, pp. 4171–4174.

    Article  Google Scholar 

  • Yamamoto, M., Fukao, S., Woodman, R.F., Ogawa, T., Tsuda, T., and Kato, S., Mid-Latitude E Region Field-Aligned Irregularities Observed with the MU Radar, J. Geophys. Res., 1991, vol. 96A, pp. 15 943–15 949.

    Google Scholar 

  • Yokoyama, T., Hysell, D., Otsuka, Y., and Yamamoto, M., Three-Dimensional Simulations of the Coupled Perkins and Es-Layer Instabilities in the Nighttime Midlatitude Ionosphere, J. Geophys. Res., 2009, vol. 114, pp. A03308.1–A03308.16.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. G. Chkhetiani.

Additional information

Original Russian Text © O.G. Chkhetiani, S.L. Shalimov, 2013, published in Geomagnetizm i Aeronomiya, 2013, Vol. 53, No. 2, pp. 187–197.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chkhetiani, O.G., Shalimov, S.L. Mechanism by which frontal structures in the ionospheric sporadic E layers are formed. Geomagn. Aeron. 53, 177–187 (2013). https://doi.org/10.1134/S0016793213020059

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016793213020059

Keywords

Navigation