Geomagnetism and Aeronomy

, Volume 53, Issue 1, pp 96–103 | Cite as

Response of mesospheric ozone to the heating of the lower ionosphere by high-power HF radio emission

  • Yu. Yu. Kulilov
  • V. L. Frolov
  • G. I. Grigor’ev
  • V. M. Demkin
  • G. P. Komrakov
  • A. A. Krasilnokov
  • V. G. Ryskin
Article

Abstract

We detected a decrease in the intensity of microwave radiation at the atmospheric ozone line at a frequency of 110836.04 MHz during ionospheric modification by high-power HF radiowaves radiated by the Sura Ionospheric Heating Facility. The obtained experimental data allowed us to hypothesize that this effect was caused by the fact that mesospheric ozone was affected by internal gravity waves generated in the E region of the ionosphere during its high-power HF radiowave heating.

Keywords

Ozone Pump Wave Internal Gravity Wave Ozone Content Lower Ionosphere 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barnett, J.J. and Corney, M., Middle Atmosphere Reference Model Derived from Satellite Data, Handbook for MAP, 1985, vol. 16, pp. 47–85.Google Scholar
  2. Belikovich, V.V. and Benediktov, E.A., Studying the Twilight Ionospheric D Region Using Artificial Periodic Irregularities, Izv. Vyssh. Uchebn. Zaved., Radiofiz., 2002, vol. 45, no. 6, pp. 502–508.Google Scholar
  3. Belikovich, V.V., Benediktov, E.A., Tolmacheva, A.V., and Bakhmet’eva, N.V., Issledovanie ionosfery s pomoshch’yu iskusstvennykh periodicheskikh neodnorodnostei (Studying the Ionosphere Using Artificial Periodic Irregularities), Nizhni Novgorod: IPF RAN, 1999.Google Scholar
  4. Belikovich, V.V., Vyakhirev, V.D., and Kalinina, E.E., Studies of the Ionosphere Using Partial Reflections, Geomagn. Aeron., 2004, vol. 44, no. 2, pp. 189–194 [Geomagn. Aeron. (Engl. transl.), 2004, vol. 44, pp. 170–174].Google Scholar
  5. Belova, E., Chilson, P.B., Kirkwood, S., and Rietveld, M.T., The Response Time of Ionospheric Heating to PMSE, J. Geophys. Res., 2003, vol. 108D, p. 8446; doi:10.1029/2002JD002385.CrossRefGoogle Scholar
  6. Berlose, J.S. and Burke, M.J., Study of the Lower Ionosphere Using Partial Reflections. 1. Experimental Technique and Methods of Analysis, J. Geophys. Res., 1964, vol. 69, pp. 2799–2818.CrossRefGoogle Scholar
  7. Burmaka, V.P., Domnin, I.F., Uryadov, V.P., and Chernogor, L.F., Variations in the Parameters of Scattered Signals and the Ionosphere, Accompanying the Effect of a Powerful Radio Emission on Plasma, Izv. Vyssh. Uchebn. Zaved., Radiofiz., 2009, vol. 52, no. 11, pp. 859–880.Google Scholar
  8. Chernogor, L.F., Studying the Lower Ionosphere Using the Methods of Impulsive Cross-Modulation, Geofiz. Zh., 1984, vol. 6, no. 5, pp. 46–58.Google Scholar
  9. Cot, C. and Teitelbaum, H., Generation of Gravity Waves by Inhomogeneous Heating of the Atmosphere, J. Atmos. Terr. Phys., 1980, vol. 42, no. 9/10, pp. 877–883.CrossRefGoogle Scholar
  10. Danilov, A.D., Populyarnaya aeronomiya (Popular Aeronomy), Leningrad: Gidrometeoizdat, 1978.Google Scholar
  11. Enell, C.-F., Kero, A., Turunen, E., et al., Effects of D-Region RF Heating Studied by the Sodankyla Ion Chemistry Model, Ann. Geophys., 2005, vol. 23, pp. 1575–1583.CrossRefGoogle Scholar
  12. Fejer, J.A., The Interaction of Pulsed Radio Waves in the Ionosphere, J. Atmos. Terr. Phys., 1955, vol. 7, no. 6, pp. 322–332.CrossRefGoogle Scholar
  13. Gage, K.S. and Green, J.L., A Technique for Determining the Temperature Profile from VHF Radar Observations, J. Appl. Meteorol., 1982, vol. 21, pp. 1146–1149.CrossRefGoogle Scholar
  14. Getmantsev, G.G., Zuikov, N.A., Kotik, D.S., et al., Detecting Combination Frequencies during the Interaction between a Powerful HF Emission and Ionospheric Plasma, Pis’ma Zh. Eksp. Teor. Fiz., 1974, vol. 20, pp. 229–232.Google Scholar
  15. Ginzburg, V.L., Rasprostranenie elektromagnitnykh voln v plazme (Propagation of Electromagnetic Waves in Plasma), Moscow: Nauka, 1967.Google Scholar
  16. Gossard, E. and Hooke, W.H., Waves in the Atmosphere, Amsterdam: Elsevier, 1975.Google Scholar
  17. Grigor’ev, G.I., Acoustic Gravity Waves in the Earth’s Atmosphere: A Review, Izv. Vyssh. Uchebn. Zaved., Radiofiz., 1999, vol. 42, no. 1, pp. 3–25.Google Scholar
  18. Grigor’ev, G.I. and Dokuchaev, V.P., Generation of Ionospheric Disturbances by Alternating Currents at Polar Latitudes, Geomagn. Aeron., 1969, vol. 9, no. 4, pp. 650–654.Google Scholar
  19. Grigor’ev, G.I. and Trakhtengerts, V.Yu., Emission of Internal Gravity Waves during Operation of High-Power Heating Facilities in the Regime of Time Modulation of Ionospheric Currents, Geomagn. Aeron., 1999, vol. 39, no. 6, pp. 90–94 [Geomagn. Aeron. (Engl. transl.), 1999, vol. 39, pp. 758–762].Google Scholar
  20. Gurevich, A.V. and Shvartsburg, A.B., Nelineinaya teoriya rasprostraneniya radiovoln v ionosfere (Nonlinear Theory of Radiowave Propagation in the Ionosphere), Moscow: Nauka, 1973.Google Scholar
  21. Hilsenrath, E., Ozone Measurements in the Mesosphere and Stratosphere during Two Significant Geophysical Events, J. Atmos. Sci., 1971, vol. 28, pp. 295–297.CrossRefGoogle Scholar
  22. Itkina, M.A. and Krotova, Z.N., Variation in the Lower Atmosphere Parameters under the Action of a Powerful Radio Emission, Izv. Vyssh. Uchebn. Zaved., Radiofiz., 1981, vol. 24, pp. 415–419.Google Scholar
  23. Ivanov, V.A., Issledovanie D-oblasti ionosfery metodom chastichnykh otrazhenii (Studying the Ionospheric D Region Using Partial Reflections), Ioshkar-Ola: MPI, 1985.Google Scholar
  24. Karashtin, A.N., Komrakov, G.P., Tokarev, Yu.V., and Shlyugaev, Yu.V., Radar Studies at the Sura Facility, Izv. Vyssh. Uchebn. Zaved., Radiofiz., 1999, vol. 42, no. 8, pp. 765–779.Google Scholar
  25. Krasil’nikov, A.A., Kulikov, Yu.Yu., Ryskin, V.G., and Shchitov, A.M., Microwave Receivers for Diagnosing Minor Gas Constituents of the Earth’s Atmosphere, Izv. Akad. Nauk, Ser. Fiz., 2003, vol. 67, pp. 1788–1792.Google Scholar
  26. Kulikov, Y.Y., Krasilnikov, A.A., and Shchitov, A.M., New Mobile Ground-Based Microwave Instrument for Research of Stratospheric Ozone (Some Results of Observation), Proc. MSMW’07 Conf., 2007, vol. 1, pp. 62–66.Google Scholar
  27. Kulikov, Y.Y., Demkin, V.M., and Krasilnikov, A.A., Fast Variations of Thermal Emission of Middle Atmosphere in a Line of Ozone at Frequency 110.8 GHz on Plateau Shatzhatmas-Kislovodsk, 31st Annual Apatity Seminar “Physics of Auroral Phenomena”, Apatity, 2008, pp. 72–73.Google Scholar
  28. Lee, C.C., Liu, J.Y., Chen, M.Q., et al., Observation and Model Comparisons of the Traveling Atmospheric Disturbances of the Western Pacific Region during the 6–7 April 2000 Magnetic Storm, J. Geophys. Res., 2004, vol. 109, p. A09309; doi:10.1029/2003JA010267.CrossRefGoogle Scholar
  29. Meltz, G., Holway, L.H., and Tomlyanovich, N.M., Ionospheric Heating by Powerful Radio Waves, Radio Sci., 1974, vol. 9, pp. 1049–1063.CrossRefGoogle Scholar
  30. Mitra, A.P. and Rowe, J.N., Ionospheric Effects of Solar Flares-VI. Changes in D-Region Ion Chemistry during Solar Flares, J. Atmos. Terr. Phys., 1972, vol. 34, pp. 795–806.CrossRefGoogle Scholar
  31. De la Noe, J., Baudry, A., Perault, M., et al., Measurements of the Vertical Distribution of Ozone by Ground-Based Microwave Techniques at the Bordeaux Observatory during the June 1981 Intercomparison Campaign, Planet. Space Sci., 1983, vol. 16, pp. 737–741.Google Scholar
  32. Pakhomov, S.V. and Knyazev, A.K., Ozone in the Mesosphere and Electron Density in the Midlatitude D Region, Geomagn. Aeron., 1988, vol. 28, no. 6, pp. 976–979.Google Scholar
  33. Shefov, N.N., Semenov, A.I., and Khomich, V.Yu., Izluchenie verkhnei atmosfery — indikator ee struktury i dinamiki (Emission of the Upper Atmosphere as an Indicator of Its Structure and Dynamics), Moscow: GEOS, 2006.Google Scholar
  34. Sheldon, W.R., Benbrook, J.R., and Aimedieu, P., Ozone Depletion in the Upper Stratosphere at the Down Terminator, J. Atmos.Terr. Phys., 1997, vol. 59, no. 1, pp. 1–7.CrossRefGoogle Scholar
  35. Tomko, A.A., Ferraro, A.J., Lee, H.S., and Mitra, A.P., A Theoretical Model of D-Region Ion Chemistry Modifications during High Power Radio Wave Heating, J. Atmos. Terr. Phys., 1980, vol. 42, pp. 275–285.CrossRefGoogle Scholar
  36. Utlaut, W.F. and Violett, E.J., A Summary of Vertical Incidence Radio Observations of Ionospheric Modulation, Radio Sci., 1974, vol. 9, pp. 805–903.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • Yu. Yu. Kulilov
    • 1
  • V. L. Frolov
    • 2
  • G. I. Grigor’ev
    • 2
  • V. M. Demkin
    • 1
  • G. P. Komrakov
    • 2
  • A. A. Krasilnokov
    • 1
  • V. G. Ryskin
    • 1
  1. 1.Institute of Applied PhysicsRussian Academy of SciencesNizhni NovgorodRussia
  2. 2.Scientific Research Radiophysical InstituteNizhni NovgorodRussia

Personalised recommendations