Skip to main content
Log in

Calculation of the solar activity effect on the production rate of cosmogenic radiocarbon in polar ice

  • Published:
Geomagnetism and Aeronomy Aims and scope Submit manuscript

Abstract

The propagation of cosmic rays in the Earth’s atmosphere is simulated. Calculations of the omnidirectional differential flux of neutrons for different solar activity levels are illustrated. The solar activity effect on the production rate of cosmogenic radiocarbon by the nuclear-interacting and muon components of secondary cosmic radiation in polar ice is studied. It has been obtained that the 14C production rates in ice by the cosmic ray nuclear-interacting component are lower or higher than the average value by 30% during periods of solar activity maxima or minima, respectively. Calculations of the altitudinal dependence of the radiocarbon production rate in ice by the cosmic radiation components are illustrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agostinelli, S., Allison, J., Amako, K., et al., Geant4: A Simulation Toolkit, Nuclear Instrum. Methods Phys. Res. A, 2003, vol. 506, pp. 250–303.

    Article  Google Scholar 

  • Boezio, M., Carlson, P., Franke, T., et al., Measurement of the Flux of Atmospheric Muons with the CAPRICE94 Apparatus, Phys. Rev. D, 2000, vol. 62, p. 032007.

    Article  Google Scholar 

  • Boezio, M., Bonvicini, V., Schiavon, P., et al., Energy Spectra of Atmospheric Muons Measured with the CAPRICE98 Balloon Experiment, Phys. Rev. D, 2003, vol. 67, p. 072003.

    Article  Google Scholar 

  • Desilets, D. and Zreda, M., Spatial and Temporal Distribution of Secondary Cosmic-Ray Nucleon Intensities and Applications to in Situ Cosmogenic Dating, Earth Planet. Sci. Lett., 2003, vol. 206, pp. 21–42.

    Article  Google Scholar 

  • Dunai, T.J., Scaling Factors for Production Rates of in Situ Produced Cosmogenic Nuclides: A Critical Reevaluation, Earth Planet. Sci. Lett., 2000, vol. 176, pp. 157–169.

    Article  Google Scholar 

  • Gleeson, L.J. and Axford, W.I., Solar Modulation of Galactic Cosmic Rays, Astrophys. J., 1968, vol. 154, pp. 1011–1026.

    Article  Google Scholar 

  • Gordon, M.S., Goldhagen, P., Rodbell, K.P., Zabel, T.H., Tang, H.H.K., Clem, J.M., and Bailey, P., Measurement of the Flux and Energy Spectrum of Cosmic-Ray Induced Neutrons on the Ground, IEEE Trans. Nuclear Sci., 2004, vol. 51, no. 6, pp. 3427–3434.

    Article  Google Scholar 

  • Heisinger, B., Lal, D., Jull, A.J.T., Kubik, P., Ivy-Ochs, S., Neumaier, S., Knie, K., Lazarev, V., and Nolte, E., Production of Selected Cosmogenic Radionuclides by Muons. 1. Fast Muons, Earth Planet. Sci. Lett., 2002a, vol. 200, pp. 345–355.

    Article  Google Scholar 

  • Heisinger, B., Lal, D., Jull, A.J.T., Kubik, P., Ivy-Ochs, S., Knie, K., and Nolte, E., Production of Selected Cosmogenic Radionuclides by Muons: 2. Capture of Negative Muons, Earth Planet. Sci. Lett., 2002b, vol. 200, pp. 357–369.

    Article  Google Scholar 

  • Lal, D., Jull, A.J.T., Pollard, D., and Vacher, L., Evidence for Large Century Time-Scale Changes in Solar Activity in the Past 32 kyr, Based on in Situ Cosmogenic 14C in Ice at Summit, Greenland, Earth Planet. Sci. Lett., 2005, vol. 234, pp. 335–349.

    Article  Google Scholar 

  • Masarik, J. and Beer, J., An Updated Simulation of Particle Fluxes and Cosmogenic Nuclide Production in the Earth’s Atmosphere, J. Geophys. Res., 2009, vol. 114D, p. D11103.

    Article  Google Scholar 

  • Nesterenok, A.V. and Naidenov, V.O., Radiocarbon in the Antarctic Ice: The Formation of the Cosmic Ray Muon Component at Large Depths, Geomagn. Aeron., 2010, vol. 50, no. 1, pp. 138–144 [Geomagn. Aeron. (Engl. transl.), 2010, vol. 50, p. 134].

    Article  Google Scholar 

  • Nesterenok, A.V. and Naidenov, V.O., In Situ Formation of Cosmogenic 14C by Cosmic Ray Nucleons in Polar Ice, Nuclear Instrum. Meth. Phys. Res. B, 2012, vol. 270, pp. 12–18.

    Article  Google Scholar 

  • Panasyuk, M.I., Stranniki Vselennoi Ili Ekho Bol’shogo Vzryva (Wanderers of the Universe or the Echo of Large Explosion), Fryazino: “Vek 2”, 2005.

    Google Scholar 

  • Raubenheimer, B.C. and Stoker, P.H., Various Aspects of the Attenuation Coefficient of a Neutron Monitor, J. Geophys. Res., 1974, vol. 79, pp. 5069–5076.

    Article  Google Scholar 

  • Rogers, I.W. and Tristam, M., The Absolute Depth-Intensity Curve for Cosmic-Ray Muons Underwater and the Integral Sea-Level Momentum Spectrum in the Range 1–100 GeV/c, J. Phys. G: Nuclear Phys., 1984, vol. 10, pp. 983–1001.

    Article  Google Scholar 

  • Sato, T. and Niita, K., Analytical Functions to Predict Cosmic-Ray Neutron Spectra in the Atmosphere, Radiat. Res., 2006, vol. 166, pp. 544–555.

    Article  Google Scholar 

  • Standard Atmosphere 1976, Committee on Extension to the Standard Atmosphere COESA, US, 1976

  • Usoskin, I.G., Alanko-Huotari, K., Kovaltsov, G.A., and Mursula, K., Heliospheric Modulation of Cosmic Rays: Monthly Reconstruction for 1951–2004, J. Geophys. Res., 2005, vol. 110A, p. A12108.

    Article  Google Scholar 

  • Wiebel-Sooth, B., Biermann, P.L., and Meyer, H., Cosmic Rays. VII. Individual Element Spectra: Prediction and Data, Astron. Astrophys., 1998, vol. 330, pp. 389–398.

    Google Scholar 

  • Ziegler, J.F., Terrestrial Cosmic Ray Intensities, IBM J. Res. Development, 1998, vol. 42, no. 1, pp. 117–139.

    Article  Google Scholar 

  • http://badc.nerc.ac.uk/view/badc.nerc.ac.uk-ATOM-dataent-CIRA.

  • http://cr0.izmiran.rssi.ru/common/links.htm.

  • http://geant4.cern.ch/support/index.shtml.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Nesterenok.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nesterenok, A.V., Naidenov, V.O. Calculation of the solar activity effect on the production rate of cosmogenic radiocarbon in polar ice. Geomagn. Aeron. 52, 992–998 (2012). https://doi.org/10.1134/S0016793212080166

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016793212080166

Keywords

Navigation