Skip to main content
Log in

Model of the vibrational level population of the b 1Σ + g state of oxygen molecules at heights of the lower thermosphere and mesosphere

  • Published:
Geomagnetism and Aeronomy Aims and scope Submit manuscript

Abstract

The quenching rate coefficients of electronically excited molecules O2 (b 1Σ + g , v = 1–20) by oxygen molecules are calculated. It is shown that intermolecular processes of electronic excitation transfer with the formation of O2 (b 1Σ + g , v = 0) and O2 (a 1 Δg, v = 0) are dominating quenching channels. The calculated coefficients are used for the calculations of relative populations O2 (b 1Σ + g , v = 1–20) at altitudes of 80–110 km. The calculated populations are compared with experimental estimates available in literature and a good agreement is observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amaral, G.A., Kalogerakis, K.S., and Copeland, R.A., Temperature Dependence of the Collisional Removal of O2(a 1Δg, b 1Σ +g , and c 1Σ u ) Molecules in Highly Vibrationally Excited Levels, EOS Trans. AGU, 2002, vol. 83, p. 236.

    Google Scholar 

  • Antonov, I.O., Azyazov, V.N., and Ufimtsev, N.I., Experimental and Theoretical Study of Distribution of O2 Molecules over Vibrational Levels in O2(a 1Δg)-I Mixture, J. Chem. Phys., 2003, vol. 119, no. 20, pp. 10638–10646.

    Article  Google Scholar 

  • Azyazov, V.N., Antonov, I.O., Pichugin, S.Yu., Safonov, V.S., Svistun, M.I., and Ufimtsev, N.I., Registration of Vibrationally Excited O2 in an Active Medium of Chemical Oxygen-Iodine Laser, Kvantovaya Elektron., 2003, vol. 33, no. 9, pp. 811–816.

    Article  Google Scholar 

  • Bates, D.R., Excitation and Quenching of the Oxygen Bands in the Nightglow, Planet. Space Sci., 1988, vol. 36, no. 9, pp. 875–881.

    Article  Google Scholar 

  • Bloemink, H.I., Copeland, R.A., and Slanger, T.G., Collisional Removal of O2(b 1Σ +g , v = 1.2) by O2, N2, and CO2, J. Chem. Phys., 1998, vol. 109, no. 11, pp. 4237–4245.

    Article  Google Scholar 

  • Gattinger, R.L. and Vallance, Jones A., The Vibrational Development of the O2(b 1Σ +g X 3Σ g ) System in Auroras, J. Geophys. Res., 1976, vol. 81, no. 25, pp. 4789–4792.

    Article  Google Scholar 

  • Greer, R.G.H., Llewellyn, E.J., Solheim, B.H., and Witt, G., The Excitation of O2(b 1Σ +g ) in the Nightglow, Planet. Space Sci., 1981, vol. 29, no. 4, pp. 383–389.

    Article  Google Scholar 

  • Henriksen, K. and Sivjee, G.G., Auroral Vibrational Population of the O2(b 1Σ +g , v′) Levels, Planet. Space Sci., 1990, vol. 38, no. 7, pp. 835–840.

    Article  Google Scholar 

  • Kalogerakis, K.S., Copeland, R.A., and Slanger, T.G., Collisional Removal of O2(b 1Σ +g , v = 2, 3), J. Chem. Phys., 2002, vol. 116, no. 12, pp. 4877–4885.

    Article  Google Scholar 

  • Kirillov, A.S., Calculation of Rate Coefficients of Electron Energy Transfer Processes for Molecular Nitrogen and Molecular Oxygen, Adv. Space Res., 2004a, vol. 33, no. 6, pp. 998–1004.

    Article  Google Scholar 

  • Kirillov, A.S., Singlet Oxygen Production in the Earth’s Atmosphere during Solar Proton Precipitation, Ekol. Khim., 2004b, vol. 13, no. 2, pp. 69–78.

    Google Scholar 

  • Kirillov, A.S., Application of Landau-Zener and Rosen-Zener Approximations to Calculate Rates of Electron Energy Transfer Processes, Adv. Space Res., 2004c, vol. 33, no. 6, pp. 993–997.

    Article  Google Scholar 

  • Kirillov, A.S., The Study of Intermolecular Energy Transfers in Electronic Energy Quenching for Molecular Collisions N2-N2, N2-O2, O2-O2, Ann. Geophys., 2008, vol. 26, no. 5, pp. 1149–1157.

    Article  Google Scholar 

  • Kirillov, A.S., Electronic Kinetics of Molecular Nitrogen and Molecular Oxygen in High-Latitude Lower Thermosphere and Mesosphere, Ann. Geophys., 2010, vol. 28, no. 1, pp. 181–192.

    Article  Google Scholar 

  • Kirillov, A.S., Model of Vibrational Level Populations of Herzberg States of Oxygen Molecules at Heights of the Lower Thermosphere and Mesosphere, Geomagn. Aeron., 2012, vol. 52, no. 2, pp. 258–264 [Geomagn. Aeron. (Engl. transl.), 2012, vol. 52, pp. 242–247].

    Article  Google Scholar 

  • McDade, I.C., Murtagh, D.P., Greer, R.G.H., Dickinson, P.H.G., Witt, G., Stegman, J., Llewellyn, E.J., Thomas, L., and Jenkins, D.B., ETON 2: Quenching Parameters for the Proposed Precursors of O2(b 1Σ +g ) and O(1 S) in the Terrestrial Nightglow, Planet. Space Sci., 1986, vol. 34, no. 9, pp. 789–800.

    Article  Google Scholar 

  • Ogawa, T., Iwagami, N., Nakamura, M., Takano, M., Tanabe, H., Takechi, A., Miyashita, A., and Suzuki, K., A Simultaneous Observation of the Height Profiles of the Night Airglow OI 5577 2 Herzberg and Atmospheric Bands, J. Geomagn. Geoelectr., 1987, vol. 39, no. 4, pp. 211–228.

    Article  Google Scholar 

  • Perminov, V.I., Shefov, N.N., and Semenov, A.I., Empirical Model of Variations in the Emission of the Molecular Oxygen Atmospheric System. I. Intensity, Geomagn. Aeron., 2007, vol. 47, no. 1, pp. 111–115 [Geomagn. Aeron. (Engl. transl.), 2007, vol. 47, pp. 104–108].

    Article  Google Scholar 

  • Semenov, A.I. and Shefov, N.N., Model of the Vertical Profile of the Atomic Oxygen Concentration in the Mesopause and Lower Ionosphere Region, Geomagn. Aeron., 2005, vol. 45, no. 6, pp. 844–855 [Geomagn. Aeron. (Engl. transl.), 2005, vol. 45, pp. 797–808].

    Google Scholar 

  • Shefov, N.N., Semenov, A.I., and Khomich, V.Yu., Izluchenie verkhnei atmosfery-indikator ee struktury i dinamiki (Studying the Upper Atmosphere as an Indicator of Its Structure and Dynamics), Moscow: GEOS, 2006.

    Google Scholar 

  • Slanger, T.G. and Copeland, R.A., Energetic Oxygen in the Upper Atmosphere and the Laboratory, Chem. Rev., 2003, vol. 103, no. 12, pp. 4731–4765.

    Article  Google Scholar 

  • Slanger, T.G., Cosby, P.C., Huestis, D.L., and Osterbrock, D.E., Vibrational Level Distribution of O2(b 1σ +g , v = 0–15) in the Mesosphere and Lower Thermosphere Region, J. Geophys. Res., 2000, vol. 105D, pp. 20557–20564.

    Article  Google Scholar 

  • Slater, J., Slater, J.C., Electronic Structure of Molecules, New York: McGraw-Hill Book Company, 1963.

    Google Scholar 

  • Smith, I.W.M., The Role of Electronically Excited States in Recombination Reactions, Int. J. Chem. Kinet., 1984, vol. 16, no. 4, pp. 423–443.

    Article  Google Scholar 

  • Tarasova, T.M., Night Sky Emission Line Intensity Distri-bution with Respect to Height, Space Res., 1963, vol. 3, pp. 162–172.

    Google Scholar 

  • Vallance, Jones A., Aurora, Geophys. Astrophys. Monogr., 1974, vol. 9, p. 301.

    Google Scholar 

  • Vallance, JonesA. and Gattinger, R.L., The O2(b 1σ +g )-O2(X 3Σ g ) System in Aurora, J. Geophys. Res., 1974, vol. 79, no. 31, pp. 4821–4822.

    Article  Google Scholar 

  • Witt, G., Stegman, J., Solheim, B.H., and Llewellyn, E.J., A Measurement of the O2(b 1σ +g X 3Σ g ) Atmospheric Band and the O(1 S) Green Line in the Nightglow, Planet. Space Sci., 1979, vol. 27, no. 4, pp. 341–350.

    Article  Google Scholar 

  • Wraight, P.C., Association of Atomic Oxygen and Airglow Excitation Mechanisms, Planet. Space Sci., 1982, vol. 30, no. 3, pp. 251–259.

    Article  Google Scholar 

  • Zhu, C. and Lin, S.H., Unified Semiclassical Theory for the Two-State System: An Analytical Solution for General Nonadiabatic Tunneling, J. Chem. Phys., 2006, vol. 125, p. 044104; doi:10.1063/1.2227399.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Kirillov.

Additional information

Original Russian Text © A.S. Kirillov, 2012, published in Geomagnetizm i Aeronomiya, 2012, Vol. 52, No. 3, pp. 406–412.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kirillov, A.S. Model of the vibrational level population of the b 1Σ + g state of oxygen molecules at heights of the lower thermosphere and mesosphere. Geomagn. Aeron. 52, 383–389 (2012). https://doi.org/10.1134/S0016793212030085

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016793212030085

Keywords

Navigation