Geomagnetism and Aeronomy

, Volume 51, Issue 8, pp 1109–1120 | Cite as

Results of Russian experiments dealing with the impact of powerful HF radiowaves on the high-latitude ionosphere using the EISCAT facilities

  • N. F. Blagoveshchenskaya
  • T. D. Borisova
  • M. T. Rietveld
  • T. K. Yeoman
  • D. M. Wright
  • M. Rother
  • H. Lühr
  • E. V. Mishin
  • C. Roth
Article

Abstract

We present the results of complex experiments dealing with the impact of powerful HF radiowaves on the high-latitude ionosphere using the European Incoherent Scatter Scientific Association (EISCAT) facilities. During the ionospheric F-region heating by powerful extraordinary (X-mode) polarized HF radiowaves under the conditions of heating near the critical fH frequency fHfxF2 of the extraordinary wave of the F2-layer, we were first to detect the excitation of intense artificial small-scale ionospheric irregularities (ASIs), accompanied by electron temperature increases by approximately 50%. The results of coordinated satellite and ground-based observations of the powerful HF radiowave impact on the high-latitude ionosphere are considered. During ionospheric F-region heating by powerful HF radiowaves of ordinary polarization (O-mode) during evening hours, the phenomenon of ion outflow accompanied by electron temperature increases and thermal plasma expansion was revealed. Concurrent DMSP-F15 satellite measurements at a height of about 850 km indicate an O+ ion density increase. The CHAMP satellite observations identified ULF emissions at the modulation frequency (3 Hz) of the powerful HF radiowave, generated during modulated emissions of the powerful HF radiowave of O-polarization and accompanied by a substantial increase in the electron temperature and ASI generation.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Avdeev, V.B., Belei, V.S., Belenov, A.F., et al., Overview of Results Dealing with Scattering of HF Signals on Artificial Plasma Turbulence, Obtained Using a UTR-2 Radio Telescope, Izv. Vyssh. Uchebn. Zaved., Radiofiz., 1994, vol. 37, pp. 479–492.Google Scholar
  2. Blagoveshchenskaya, N.F., Kornienko, V.A., Petlenko, A.V., et al., Geophysical Phenomena During An Ionospheric Modification Experiment at Tromsø, Ann. Geophys., 1998, vol. 16, pp. 1212–1225.CrossRefGoogle Scholar
  3. Blagoveshchenskaya, N.F., Kornienko, V.A., Brekke, A., et al., Phenomena Observed by HF Long-Distance Tools in the HF Modified Auroral Ionosphere During Magnetospheric Substorm, Radio Sci., 1999, vol. 34, pp. 715–724.CrossRefGoogle Scholar
  4. Blagoveshchenskaya, N.F., Geofizicheskie Effekty Aktivnykh Vozdeistvii V Okolozemnom Kosmicheskom Prostranstve (Geophysical Effects due to Active Impacts in Near Space), St. Petersburg: Gidrometeoizdat, 2001, p. 287.Google Scholar
  5. Blagoveshchenskaya, N.F., Borisova, T.D., Kornienko, V.A., et al., Phenomena in the Ionosphere-Magnetosphere System Induced by Injection of Powerful HF Radio-waves Into Night-Side Auroral Ionosphere, Ann. Geophys., 2005, vol. 23, no. 1, pp. 87–100.CrossRefGoogle Scholar
  6. Blagoveshchenskaya, N.F., Borisova, T.D., Kornienko, V.A., et al., Artificial Field-Aligned Irregularities in Nightside Auroral Ionosphere, Adv. Space Res., 2006a, vol. 38, pp. 2503–2510.CrossRefGoogle Scholar
  7. Blagoveshchenskaya, N.F., Kornienko, V.A., Borisova, T.D., et al., Heater-Induced Phenomena in a Coupled Ionosphere-Magnetosphere System, Adv. Space Res., 2006b, vol. 38, pp. 2495–2502.CrossRefGoogle Scholar
  8. Blagoveshchenskaya, N.F., Borisova, T.D., Kornienko, V.A., et al., SPEAR-Induced Field-Aligned Irregularities Observed from Bistatic HF Radio Scattering in the Polar Ionosphere, J. Atmos. Solar-Terr. Phys., 2009a, vol. 71, pp. 11–20.CrossRefGoogle Scholar
  9. Blagoveshchenskaya, N.F., Carlson, H.C., Kornienko, V.A., et al., Phenomena Induced by Powerful HF Pumping towards Magnetic Zenith with a Frequency Near the F-Region Critical Frequency and the Third Electron Gyro Harmonic Frequency, Ann. Geophys., 2009b, vol. 27, pp. 131–145.CrossRefGoogle Scholar
  10. Coster, A.J., Djuth, F.T., Jost, R.J., and Gordon, W.E., The Temporal Evolution of 3-m Striations in the Modified Ionosphere, J. Geophys. Res., 1985, vol. 90, pp. 2807–2818.CrossRefGoogle Scholar
  11. Erukhimov, L.M., Metelev, S.A., Artificial Ionospheric Turbulence: Overview, Izv. Vyssh. Uchebn. Zaved. Radiofiz., 1987, vol. 30, pp. 208–226.Google Scholar
  12. Fejer, J.A., Ionospheric Modification and Parametric Instabilities, Rev. Geophys., 1979, vol. 17, pp. 135–153.CrossRefGoogle Scholar
  13. Forme, F.R.E. and Fontaine, D., Enhanced Ion Acoustic Fluctuations and Ion Outflow, Ann. Geophys., 1999, vol. 17, pp. 190–209.CrossRefGoogle Scholar
  14. Foster, C., Lester, M., and Davies, J.A., A Statistical Study of Diurnal, Seasonal and Solar Cycle Variations of F-Region and Topside Auroral Upflows Observed by EISCAT between 1984 and 1996, Ann. Geophys., 1998, vol. 16, pp. 1144–1158.CrossRefGoogle Scholar
  15. Frolov, V.L., Erukhimov, L.M., Metelev, S.A., et al., Temporal Behaviour of Artificial Small-Scale Ionospheric Irregularities: Review of Experimental Results, J. Atmos. & Solar-Terr. Phys., 1997, vol. 59, pp. 2317–2328.CrossRefGoogle Scholar
  16. Getmantsev, G.G., Zuikov, N.S., Kotik, D.S., et al., Detection of Raman Frequencies during Interaction of Powerful High-Frequency Radiation with Ionospheric Plasma, Pis’ma Zh.ETF, 1974, vol. 20, pp. 229–232.Google Scholar
  17. Grach, S.M. and Karashtin, A.N., Mityakov et al., Thermal Parametric Instability in Inhomogeneous Plasma: Nonlinear Theory, Fiz. Plazmy, 1978, vol. 4, pp. 1330–1340.Google Scholar
  18. Greenwald, R.A., Baker, K.B., Dudeney, J.R., et al., DARN/SuperDARN: A Global View of the Dynamics of High-Latitude Convection, Space Sci. Rev., 1995, vol. 71, pp. 761–796.CrossRefGoogle Scholar
  19. Gurevich, A.V. and Shvartsburg, A.B., Nelineinaya teoriya rasprostraneniya radiovoln v ionosfere (Nonlinear Theory of Radiowave Propagation in the Ionosphere), Moscow: Nauka, 1973, p. 276.Google Scholar
  20. Gurevich, A.V., Nonlinear Phenomena in the Ionosphere, Usp. Fiz. Nauk, 2007, vol. 177, no. 11, pp. 1145–1177.CrossRefGoogle Scholar
  21. Ivanov, V.A., Ignat’ev, Yu.A., Frolov, V.A., et al., Focusing Properties of an Artificial Large-Scale Disturbance Region on a 25-km Path, Geomagn. Aeron., 1986, vol. 26, pp. 328–334.Google Scholar
  22. Milikh, G.M., Papadopoulos, K., McCarric, M., and Preston, J., ELF Emission Generated by the HAARP HF Heater Using Varying Frequency and Polarization, Izv. Vyssh. Uchebn. Zaved., Radiofiz., 1999, vol. 42, pp. 728–735.Google Scholar
  23. Milikh, G.M., Papadopoulos, K., Shroff, H., et al., Formation of Artificial Ionospheric Ducts, Geophys. Rev. Lett., 2008, vol. 35, pp. L17104–L17108.CrossRefGoogle Scholar
  24. Noble, S.T., Djuth, F.T., Jost, R.J., et al., Multiple Frequency Radar Observations of High-Latitude E Region Irregularities in the HF Modified Ionosphere, J. Geophys. Res., 1987, vol. 92, pp. 13613–13627.CrossRefGoogle Scholar
  25. Reigber, C., Lhr, H., and Schwintzer, P., CHAMP Mission Status, Adv. Space Res., 2002, vol. 30, no. 2, pp. 129–141.CrossRefGoogle Scholar
  26. Rietveld, M.T., Kohl, H., Kopka, H., and Stubbe, P., Introduction to Ionospheric Heating at Tromsø. P. I. Experimental Overview, J. Atmos. Terr. Phys., 1993, vol. 55, pp. 577–599.CrossRefGoogle Scholar
  27. Rietveld, M.T., Kosch, M.J., Blagoveshchenskaya, N.F., et al., Ionospheric Electron Heating, Optical Emissions, and Striations Induced by Powerful HF Radio-waves at High Latitudes: Aspect Angle Dependence, J. Geophys. Res., 2003, vol. 108, no. A4, pp. SIA 2-1–SIA 2-16.CrossRefGoogle Scholar
  28. Rishbeth, H. and van Eyken, T., EISCAT: Early History and the First Ten Years of Operation, J. Atmos. Terr. Phys., 1993, vol. 55, pp. 525–542.CrossRefGoogle Scholar
  29. Robinson, T.R., Strangeway, R., Wright, D.M., et al., FAST Observations of ULF Waves Injected Into the Magnetosphere by Means of Modulated RF Heating of the Auroral Electrojet, Geophys. Rev. Lett., 2000, vol. 27, pp. 3165–3168.CrossRefGoogle Scholar
  30. Stubbe, P. and Kopka, H., Modification of the Polar Electrojet by Powerful HF Radiowaves, J. Geophys. Res., 1977, vol. 82, pp. 2319–2325.CrossRefGoogle Scholar
  31. Stubbe, P., Review of Ionospheric Modification Experiments at Tromsø, J. Atmos. Solar-Terr. Phys., 1996, vol. 58, pp. 349–368.CrossRefGoogle Scholar
  32. Thome, G.D. and Blood, D.W., First Observation of RF Backscatter from Field-Aligned Irregularities Produced by Ionospheric Heating, Rad. Sci., 1974, vol. 9, pp. 917–929.CrossRefGoogle Scholar
  33. Vas’kov, V.V. and Gurevich, A.V., Nonlinear Resonance Instability of Plasma in the Field of an Ordinary Electromagnetic Wave, Zh. Eksp. Teor. Fiz., 1975, vol. 69, pp. 176–188.Google Scholar
  34. Wahlund, J.-E., Opgenoorth, H.J., Hggstrm, I., et al., EISCAT Observations of Topside Ionospheric Ion Outflows During Auroral Activity: Revisited, J. Geophys. Res., 1992, vol. 97, pp. 3019–3037.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  • N. F. Blagoveshchenskaya
    • 1
  • T. D. Borisova
    • 1
  • M. T. Rietveld
    • 2
  • T. K. Yeoman
    • 3
  • D. M. Wright
    • 3
  • M. Rother
    • 4
  • H. Lühr
    • 4
  • E. V. Mishin
    • 5
  • C. Roth
    • 6
  1. 1.Arctic and Antarctic Research InstituteSt. PetersburgRussia
  2. 2.EISCAT Scientific AssociationRamfjordmoenNorway
  3. 3.University of LeicesterLeicesterUK
  4. 4.GeoForschungsZentrumPotsdamGermany
  5. 5.Air Force Research LaboratoryHanscomUSA
  6. 6.AER Inc.LexingtonUSA

Personalised recommendations