Skip to main content
Log in

Using the nonlinear geometrical acoustics method in the problem of moreton and EUV wave propagation in the solar corona

  • Published:
Geomagnetism and Aeronomy Aims and scope Submit manuscript

Abstract

Propagation of shock related Moreton and EUV waves in the solar atmosphere is simulated by the nonlinear geometrical acoustics method. This method is based on the ray approximation and takes account of nonlinear wave features: dependence of the wave velocity on its amplitude, nonlinear dissipation of wave energy in the shock front, and the increase in its duration with time. The paper describes ways of applying this method to solve the propagation problem of a blast magnetohydrodynamic shock wave. Results of analytical modeling of EUV and Moreton waves in the spherically symmetric and isothermal solar corona are also presented. The calculations demonstrate deceleration of these waves and an increase in their duration. The calculation results of the kinematics of the EUV wave observed on the Sun on January 17, 2010 are presented as an example.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barnes, A., Theory of Magnetohydrodynamic Waves: The WKB Approximation Revisited, J. Geophys. Res., 1992,vol. 97, no. A8, pp. 12105–12112.

    Article  Google Scholar 

  • Biesecker, D.A., Myers, D.C., Thompson, B.J., et al., Solar Phenomena Associated with “EIT Waves”, Astrophys. J., 2002, vol. 569, pp. 1009–1015.

    Article  Google Scholar 

  • Blokhintsev, D.I., Akustika neodnorodnoi dvizhushcheisya sredy (Acoustics of an Inhomogeneous Medium), Moscow: Nauka, 1981.

    Google Scholar 

  • Chen, P.F., Fang, C., and Shibata, K., A Full View of EIT Waves, Astrophys. J., 2005, vol. 622, pp. 1202–1210.

    Article  Google Scholar 

  • Delannée, C. and Aulanier, G., CME Associated with Transequatorial Loops and a Bald Patch Flare, Solar Phys., 1999, vol. 190, pp. 107–129.

    Article  Google Scholar 

  • Gallagher, P.T. and Long, D.M., Large-Scale Bright Fronts in the Solar Corona: a Review of “EIT waves,” 2010. http://arxiv.org/abs/1006.0140

  • Grechnev, V.V., Uralov, A.M., Slemzin, V.A., et al., Absorption Phenomena and a Probable Blast Wave in the 13 July 2004 Eruptive Event, Solar Phys., 2008, vol. 253, pp. 263–290.

    Article  Google Scholar 

  • Klassen, A., Aurass, H., Mann, G., and Thompson, B.J., Catalogue of the 1997 SOHO-EIT Coronal Transient Waves and Associated Type II Radio Burst Spectra, Astron. Astrophys. Suppl. Ser., 2000, vol. 141, pp. 357–369.

    Article  Google Scholar 

  • Kravtsov, Yu.A. and Orlov, Yu.I., Geometricheskaya optika neodnorodnykh sred (Geometric Optics of Inhomogeneous Media), Moscow: Nauka, 1980.

    Google Scholar 

  • Kestenboim, Kh.S., Roslyakov, G.S., and Chudov, L.A., Tochechnyi vzryv (Point Explosion), Moscow: Nauka, 1974.

    Google Scholar 

  • Kulikovskii, A.G. and Lyubimov, G.A., Magnitnaya gidrodinamika (Magnetohydrodynamics), Moscow: Fizmatgiz, 1962.

    Google Scholar 

  • Landau, L.D. and Lifshits, E.M., Teoreticheskaya fizika. Gidrodinamika (Theoretical Physics: Hydrodynamics), Moscow: Nauka, 1986.

    Google Scholar 

  • Patsourakos, S., Vourlidas, A., Wang, Y.-M., et al., What is the Nature of EUV Waves? First STEREO 3D Observations and Comparison with Theoretical Models, Astrophys. J., 2009, vol. 259, pp. 49–71.

    Google Scholar 

  • Schmidt, J.M. and Ofman, L., Global Simulation of an Extreme Ultraviolet Imaging Telescope Wave, Astrophys. J., 2010, vol. 713, pp. 1008–1015.

    Article  Google Scholar 

  • Temmer, M., Vršnak, B., Žic, T., and Veronig, A.M., Analytic Modeling of the Moreton Wave Kinematics, Astrophys. J., 2009, vol. 702, pp. 1343–1352.

    Article  Google Scholar 

  • Thompson, B.J., Gurman, J.B., Neupert, W.M., et al., SOHO/EIT Observations of the 1997 April 7 Coronal Transient: Possible Evidence of Coronal Moreton Waves, Astrophys. J., 1999, vol. 517, pp. L151–L154.

    Article  Google Scholar 

  • Uchida, Y., On the Exciters of Type II and Type III Solar Radio Bursts, Publ. Astron. Soc. Japan, 1960, vol. 12, pp. 376–397.

    Google Scholar 

  • Uchida, Y., Propagation of Hydromagnetic Disturbances in the Solar Corona and Moreton’s Wave Phenomenon, Solar Phys., 1968, vol. 4, pp. 30–44.

    Article  Google Scholar 

  • Uchida, Y., Altschuler, M., and Newkirk, G., Flare-Produced Coronal MHD-Fast-Mode Wavefronts and Moreton’s Wave Phenomenon, Solar Phys., 1973, vol. 28, pp. 495–516.

    Article  Google Scholar 

  • Uchida, Y., Behavior of the Flare-Produces Coronal MHD Wavefront and the Occurrence of Type II Radio Bursts, Solar Phys., 1974, vol. 39, pp. 431–449.

    Article  Google Scholar 

  • Uralov, A.M., Attenuation of Low-Intensity Soliton MHD Shock Waves in a Fluid Inhomogeneous Medium, Magn. Gidrodinam., 1982, no. 1, pp. 45–50.

  • Uralova, S.V. and Uralov, A.M., WKB Approach to the Problem of MHD Shock Propagation Through the Heliospheric Current Sheet, Solar Phys., 1994, vol. 152, pp. 457–479.

    Article  Google Scholar 

  • Veronig, A.M., Muhr, N., Kienreich, I.W., et al., First Observations of a Dome-Shaped Large-Scale Coronal Extreme-Ultraviolet Wave, Astrophys. J., 2010, vol. 716, pp. L57–L62.

    Article  Google Scholar 

  • Vršnak, B. and Luli, S., Formation of Coronal MHD Shock Waves: I. The Basic Mechanism, Solar Phys., 2000, vol. 196, pp. 157–180.

    Article  Google Scholar 

  • Wang, Y.-M., EIT Waves and Fast-Mode Propagation in the Solar Corona, Astrophys. J., 2000, vol. 543, pp. L89–L93.

    Article  Google Scholar 

  • Warmuth, A., Vršnak, B., Aurass, H., and Hanslmeier, A., Evolution of Two EIT/H Moreton Waves, Astrophys. J., 2001, vol. 560, pp. L105–L109.

    Article  Google Scholar 

  • Warmuth, A., Vršnak, B., Magdaleni, J., et al., A Multi-wavelength Study of Solar Flare Waves: I. Observations and Basic Properties, Astron. Astrophys., 2004, vol. 418, pp. 1101–1115.

    Article  Google Scholar 

  • Wills-Davey, M.J. and Attrill, G.D.R., EIT Waves: A Changing Understanding Over a Solar Cycle, Space Sci. Rev, 2009, vol. 149, pp. 325–353.

    Article  Google Scholar 

  • Zhukov, A.N., Rodriguez, L., and de Patoul, J., STEREO/ SECCHI Observations on 8 December 2007: Evidence Against the Wave Hypothesis of the EIT Wave Origin, Solar Phys., 2009, vol. 259, pp. 73–85.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © An.N. Afanasyev, A.M. Uralov, V.V. Grechnev, 2011, published in Solnechno-Zemnaya Fizika, 2011, Vol. 17, pp. 3–10.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Afanasyev, A.N., Uralov, A.M. & Grechnev, V.V. Using the nonlinear geometrical acoustics method in the problem of moreton and EUV wave propagation in the solar corona. Geomagn. Aeron. 51, 1015–1023 (2011). https://doi.org/10.1134/S0016793211080159

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016793211080159

Keywords

Navigation