Skip to main content
Log in

Zenith angular distributions of atmospheric high-energy neutrinos

  • Published:
Geomagnetism and Aeronomy Aims and scope Submit manuscript

Abstract

In this paper, we present a new calculation of the atmospheric neutrino flux in the energy range 10–107 GeV, which reveals sizable differences in muon neutrino flux predictions obtained with known hadronic models. The calculation is based on the method of solving nuclear cascade equations in the atmosphere, which takes into account the nonscaling behavior of inclusive cross sections for particle production, the increase in the total inelastic hadron-nucleus cross sections, and the non-power-law character of the primary cosmic ray spectrum. The efficiency of the method was recently tested in atmospheric muon flux calculations. The results of neutrino spectrum calculations have been compared with Frejus, AMANDA-II, and IceCube measurement data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbasi, R., Abdou, Y., Ackermann, M., et al., Determination of the Atmospheric Neutrino Flux and Searches for New Physics with AMANDA-II, Phys. Rev. D, 2009. vol. 79, pp. 102005.

    Article  Google Scholar 

  • Abbasi, R., Abdou, Y., Abu-Zayyad, T., et al., The Energy Spectrum of Atmospheric Neutrinos between 2 and 200 TeV with the AMANDA-II Detector, Astropart. Phys. 2010. vol. 34, pp. 48–58.

    Article  Google Scholar 

  • Achterberg, A., Ackermann, M., Adams, J., et al., Multiyear Search for a Diffuse Flux of Muon Neutrinos with AMANDA-II, Phys. Rev. D, 2007, vol. 76, pp. 042008.

    Article  Google Scholar 

  • Ackermann, M., Adams, J., Ahrens, J., et al., Search for Ultra-High-Energy Neutrinos with AMANDA-II, Astrophys. J. 2008, vol. 675, pp. 1014–1024.

    Article  Google Scholar 

  • Ahn, E.-J., Engel, R., Gaisser, T.K., et al., Cosmic Ray Interaction Event Generator SIBYLL 2.1, Phys. Rev. D, 2009, vol. 80, pp. 094003.

    Article  Google Scholar 

  • Antoni, T., Apel, W.D., Badea, A.F., et al., KASCADE Measurements of Energy Spectra for Elemental Groups of Cosmic Rays: Results and Open Problems, Astropart. Phys., 2005, vol. 24, pp. 1–25.

    Article  Google Scholar 

  • Apel W.D., Arteaga, J.C., Badea, A.F., et al., Energy Spectra of Elemental Groups of Cosmic Rays: Update on the KASCADE Unfolding Analysis, Astropart. Phys, 2009, vol. 31, pp. 86–91.

    Article  Google Scholar 

  • Aynutdinov, V., Balkanov, V., Belolaptikov, I., et al., Search for a Diffuse Flux of High-Energy Extraterrestrial Neutrinos with the NT200 Neutrino Telescope, Astropart. Phys., 2006, vol. 25, pp. 140–150.

    Article  Google Scholar 

  • Aynutdinov, V., Avrorin, A., Balkanov, V., et al., The Prototype String for the KM3-Scale Baikal Neutrino Telescope, Nucl. Instr. Meth. A., 2009, vol. 602, pp. 227–234.

    Article  Google Scholar 

  • Barr, G.D., Gaisser T.K., Lipari P., et al., Three-Dimensional Calculation of Atmospheric Neutrinos, Phys. Rev. D 2004, vol. 70, pp. 023006.

    Article  Google Scholar 

  • Berghaus, P., Abbasi, R., Ackermann, M., et al., IceCube: Status and First Results, Nucl. Phys., 2009, vol. 190, pp. 127–132.

    Article  Google Scholar 

  • Bugaev, E.V., Naumov, V.A., Sinegovsky, S.I., Zaslavskaya, E.S., Prompt Leptons in Cosmic Rays, Nuovo Cim. C, 1989, vol. 12, pp. 41–73.

    Article  Google Scholar 

  • Bugaev, E.V., Misaki, A., Naumov, V.A., et al., Atmospheric Muon Flux at Sea Level, Underground, and Underwater, Phys. Rev. D, 1998, vol. 58, pp. 054001. hep-ph/9803488.

    Article  Google Scholar 

  • Butkevich, A.V., Dedenko, L.G., and Zheleznykh, I.M., Spectra of Hadrons, Muons, and Neutrinos in the Atmosphere as the Solution to a Direct Problems, Yadr. Fiz., 1989, vol. 50, pp. 142–156.

    Google Scholar 

  • Chirkin, D., Abbasi, R., Abdou, Y., et al., Measurement of the Atmospheric Neutrino Energy Spectrum with IceCube, Proc. 31st International Cosmic Ray Conference, 7–15 July 2009, Lodz, Poland, 2009. HE.2.2–1418.

  • Daum, K., Rhode, W., Bareyre, P., et al., Determination of the Atmospheric Neutrino Spectra with the Frejus Detector, Z. Phys. C, 1995. vol. 66, pp. 417–428.

    Article  Google Scholar 

  • Enberg, R., Reno, M.H., and Sarcevic, L., Prompt Neutrino Fluxes from Atmospheric Charm, Phys. Rev. D, 2008, vol. 78, pp. 043005.

    Article  Google Scholar 

  • Fletcher, R.S., Gaisser, T.K., Lipari, P., and Stanev, T., Sibyll: An Event Generator for Simulation of High Energy Cosmic Ray Cascades, Phys. Rev. D, 1994, vol. 50, pp. 5710–5731.

    Article  Google Scholar 

  • Fiorentini, G., Naumov, V.A., and Villante F.L., Atmospheric Neutrino Flux Supported by Recent Muon Experiments, Phys. Lett. B, 2001, vol. 510, pp. 173–186.

    Article  Google Scholar 

  • Gaisser, T.K. and Honda, M., Flux of atmospheric neutrinos, Ann. Rev. Nucl. Part. Sci. 2002, vol. 52, pp. 153–199.

    Article  Google Scholar 

  • Gelmini, G., Gondolo, P., and Varieschi G., Prompt Atmospheric Neutrinos and Muons: Dependence on the Gluon Distribution Function, Phys. Rev. D, 2000, vol. 61, pp. 056011.

    Article  Google Scholar 

  • Honda, M., Kajita, T., Kasahara, K., and Midorikawa, S. New calculation of the atmospheric neutrino flux in a three-dimensional scheme, Phys. Rev. D. 2004, vol. 70, pp. 043008.

    Article  Google Scholar 

  • Kalinovsky, A.N., Mokhov, N.V., and Nikitin Yu.P., Passage of high-energy particles through matter. New York: AIP, 1989. 262 p.

    Google Scholar 

  • Kimel’, L.R. and Mokhov, N.V., Particle Distribution in the Energy Range of 10−2 to 1012 eV Inititated in Dense Media by High-Energy Hadrons, Izv. VUZ., Ser. Fiz., 1974, no. 10, pp. 17–23.

  • Kimel’, L.R. and Mokhov, N.V., Differential Cross Sections of Hadron-Nuclei Interactions and Certain Results of Calculating Internuclear Cascades, in Voprosy dozimetrii i zashchity ot izluchenii (Problems of Dosimetry and Protection from Radiation), Moscow: Atomizdat, 1975, pp. 41–44.

    Google Scholar 

  • Kochanov, A.A., Sinegovskaya, T.S., and Sinegovsky, S.I., High-energy cosmic-ray fluxes in the Earth atmosphere: Calculations vs experiments, Astropart. Phys. 2008, vol. 30, pp. 219–233.

    Article  Google Scholar 

  • Kochanov, A.A., Sinegovskaya, T.S., and Sinegovsky, S.I. Impact of High-Energy Hadron Interactions on the Atmospheric Neutrino Flux Predictions, Proc. 31st International Cosmic Ray Conference, 7–15 July 2009, Lodz, Poland. OG 2.5, ID. 0693. arXiv: 0906.067143vl (astro-ph.HE).

  • Lipari, P., Lepton Spectra in the Earth’s Atmosphere, Astropart. Phys., 1993, vol. 1, pp. 195–227.

    Article  Google Scholar 

  • Margiotta, A., The ANTARES Detector, Nucl. Phys. B. (Proc. Suppl.), 2009, vol. 190, pp. 121–126.

    Article  Google Scholar 

  • Montaruli, T., Rapporteur Talk at the International 31st Cosmic Ray Conference. arXiv:0910.4364.

  • Naumov, V.A., Sinegovskaya, T.S., and Sinegovsky, S.I., The K13 Form Factors and Atmospheric Neutrino Flavor Ratio at High Energies, Nuovo Cim. A, 1998, vol. 111, pp. 129–147.

    Google Scholar 

  • Naumov, V.A. and Sinegovskaya, T.S., Elementary Method of Solving Equations of Cosmic Ray Nucleon Transfer in the Atmosphere, Yadern. Fiz., 2000, vol. 63, no. 11., pp. 2020–2008.

    Google Scholar 

  • Naumov, V.A., Atmospheric Muons and Neutrinos, Proceedings of the 2nd Workshop on Methodical Aspects of Underwater/Underice Neutrino Telescopes, Wischnewski, R., Ed., Hamburg, 2002, pp. 31. arXiv: hep-ph/0201310v2.

  • Ostapchenko, S.S., QGSJET-II: Towards Reliable Description of Very High Energy Hadronic Interactions, Nucl. Phys. B (Proc. Suppl.), 2006a, vol. 151, pp. 143–146.

    Article  Google Scholar 

  • Ostapchenko, S., Nonlinear Screening Effects in High Energy Hadronic Interactions, Phys. Rev. D, 2006b, vol. 74, pp. 014026.

    Article  Google Scholar 

  • Panov A.D., Adams, G.H., An, H.S., et al., Elemental Energy Spectra of Cosmic Rays from the ATIC-2 Experiment Data, Izv. RAN: Ser. Fiz., 2008, vol. 71, pp. 512–515. astro-ph/0612377.

    Google Scholar 

  • Sinegovsky, S.I., Kochanov, A.A., Sinegovskaya, T.S., et al., Atmospheric Muon Flux at PeV Energies, Int. J. Mod. Phys. A, 2010, vol. 25, pp. 3733–3740. arXiv:0906.3791.

    Article  Google Scholar 

  • Volkoka, L.V., Energy Spectra and Angular Distributions of Atmospheric Neutrinos, Yadr. Fiz., 1980, vol. 31., vol. 31, pp. 1510–1521.

    Google Scholar 

  • Volkova, L.V. and Zatsepin, G.T., Uncertainties In Prompt Atmospheric Neutrino Flux Calculations, Phys. Lett. B, 1999, vol. 462, pp. 211–216.

    Article  Google Scholar 

  • Zatsepin, V.I. and Sokolskaya, N.V., Three Component Model of Cosmic Ray Spectra from 10 GeV to 100 PeV, Astron. Astrophys., 2006, vol. 458, pp. 1–5.

    Article  Google Scholar 

  • Zatsepin, V.I. and Sokol’skaya, N.V., Pis’ma Astron. Zh., 2007, vol. 33, pp. 29–38.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © A.A. Kochanov, T.S. Sinegovskaya, S.I. Sinegovsky, 2011, published in Solnechno-Zemnaya Fizika, 2011, Vol. 17, pp. 97–101.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kochanov, A.A., Sinegovskaya, T.S. & Sinegovsky, S.I. Zenith angular distributions of atmospheric high-energy neutrinos. Geomagn. Aeron. 51, 952–957 (2011). https://doi.org/10.1134/S0016793211070085

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016793211070085

Keywords

Navigation