Skip to main content
Log in

Morphology and causes of the Weddell Sea anomaly

  • Published:
Geomagnetism and Aeronomy Aims and scope Submit manuscript

Abstract

The zone of anomalous diurnal variations in foF2, which is characterized by an excess of nighttime foF2 values over daytime ones, has been distinguished in the Southern Hemisphere based on the Intercosmos-19 satellite data. In English literature, this zone is usually defined as the Weddell Sea anomaly (WSA). The anomaly occupies the longitudes of 180°–360° E in the Western Hemisphere and the latitudes of 40°–80° S, and the effect is maximal (up to ∼5 MHz) at longitudes of 255°–315° E and latitudes of 60°–70° S (50°–55° ILAT). The anomaly is observed at all levels of solar activity. The anomaly formation causes have been considered based on calculations and qualitative analysis. For this purpose, the longitudinal variations in the ionospheric and thermospheric parameters in the Southern Hemisphere have been analyzed in detail for near-noon and near-midnight conditions. The analysis shows that the daytime foF2 values are much smaller in the Western Hemisphere than in the Eastern one, and, on the contrary, the nighttime values are much larger, as a result of which the foF2 diurnal variations are anomalous. Such a character of the longitudinal effect mainly depends on the vertical plasma drift under the action of the neutral wind and ionization by solar radiation. Other causes have also been considered: the composition and temperature of the atmosphere, plasma flows from the plasmasphere, electric fields, particle precipitation, and the relationship to the equatorial anomaly and the main ionospheric trough.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Bellchambers, W.H. and Piggott, W.R., Ionospheric Measurements Made at Halley Bay, Nature, 1958, vol. 182, pp. 1596–1597.

    Article  Google Scholar 

  • Bilitza, D. and Reinisch, B., International Reference Ionosphere 2007: Improvements and New Parameters, Adv. Space Res., 2008, vol. 42, no. 4, pp. 599–609.

    Article  Google Scholar 

  • Burns, A.G., Zeng, Z., Wang, W., Lei, J., Solomon, S.C., Richmond, A.D., Killeen, T.L., and Kuo, Y.-H., The Behavior of the F2 Peak Ionosphere over the South Pacific at Dusk during Quiet Summer Conditions from COSMIC Data, J. Geophys. Res., 2008, vol. 113, no. A12305; doi:10.1029/2008JA013308.

  • Burns, A., Solomon, S., Wang, W., Richmond, A., Jee, G., Lin, C., Rocken, C., and Kuo, B., Can the Weddell Sea Anomaly and Related Phenomena be Explained by Conjugate Effects?, Proc. 4th COSMIC Data Users Workshop, Boulder, 2009.

  • Clilverd, M.A., Smith, A.J., and Thomson, N.R., The Annual Variation in Quiet Time Plasmaspheric Electron Density, Determined from Whistler Mode Group Delays, Planet. Space Sci., 1991, vol. 39, pp. 1059–1067.

    Article  Google Scholar 

  • Deminov, M.G., Karpachev, A.T., Afonin, V.V., and Annakuliev, S.K., Dynamics of the Midlatitude Trough during Magnetic Storm: Main Phase, Geomagn. Aeron., 1995, vol. 35, no. 6, pp. 69–77.

    Google Scholar 

  • Drob, D.P., Emmert, J.T., Crowley, G., et al., An Empirical Model of the Earth’s Horizontal Wind Fields: HWM07, J. Geophys. Res., 2008, vol. 113, p. A12304; doi:10.1029/2008JA013668.

    Article  Google Scholar 

  • Dudeney, J.R. and Piggott, W.R., Antarctic Ionospheric Research, Antarct. Res. Ser. Am. Geophys. Union, 1978, vol. 29, pp. 200–235.

    Article  Google Scholar 

  • Dungey, J.W., Interplanetary Magnetic Field and the Auroral Zones, Phys. Rev. Lett., 1961, vol. 6, pp. 47–48.

    Article  Google Scholar 

  • Evans, J.V., A Study of F2 Region Night-Time Vertical Ionization Fluxes at Millstone Hill, Planet. Space Sci., 1975, vol. 23, no. 12, pp. 1611–1619.

    Article  Google Scholar 

  • He, M., Liu, L., Wan, W., Ning, B., Zhao, B., Wen, J., Yue, X., and Le, H., A Study of the Weddell Sea Anomaly Observed by FORMOSAT-3/COSMIC, J. Geophys. Res., 2009, vol. 114, p. A12309; doi:10.1029/2009JA014175.

    Article  Google Scholar 

  • Hedin, A.E., Extension of the MSIS Thermosphere Model into the Middle and Lower Atmosphere, J. Geophys. Res., 1991, vol. 96, no. 2, pp. 1159–1172.

    Article  Google Scholar 

  • Hedin, A.E., Biondi, I.A., and Burnside, R.G., Revised Global Model of Thermospheric Winds Using Satellite and Ground-Based Observations, J. Geophys. Res., 1991, vol. 96, no. 5, pp. 7657–7688.

    Article  Google Scholar 

  • Horvath, I., A Total Electron Content Space Weather Study of the Nighttime Weddell Sea Anomaly of 1996/1997 Southern Summer with TOPEX/Poseidon Radar Altimetry, J. Geophys. Res., 2006, vol. 111, p. A12317; doi:10.1029/2006JA011679.

    Article  Google Scholar 

  • Horvath, I. and Essex, E.A., The Weddell Sea Anomaly Observed with the TOPEX Satellite Data, J. Atmos. Sol.-Terr. Phys., 2003, vol. 65, pp. 693–706; doi:10.1016/S1364-6826(03)00083-X.

    Article  Google Scholar 

  • Horvath, I. and Lovell, B.C., Investigating the Relationships among the South Atlantic Magnetic Anomaly, Southern Nighttime Midlatitude Trough, and Nighttime Weddell Sea Anomaly during Southern Summer, J. Geophys. Res., 2009a, vol. 114, p. A02306; doi:10.1029/2008JA013719.

    Article  Google Scholar 

  • Horvath, I. and Lovell, B.C., An Investigation of the Northern Hemisphere Midlatitude Nighttime Plasma Density Enhancements and Their Relations to the Midlatitude Nighttime Trough during Summer, J. Geophys. Res., 2009b, vol. 114, p. A08308; doi:10.1029/2009JA014094.

    Article  Google Scholar 

  • Jee, G., Burns, A.G., Kim, Y.H., and Wang, W., Seasonal and Solar Activity Variations of the Weddell Sea Anomaly Observed in the TOPEX Total Electron Content Measurements, J. Geophys. Res., 2009, vol. 114, p. A04307; doi:10.1029/2008JA013801.

    Article  Google Scholar 

  • Karpachev, A.T. and Gasilov, N.A., Variations of the Vertical Plasma Drift with Longitude in the Midlatitude Nighttime Summer Ionosphere Deduced from Measurements of hmF2, Geomagn. Aeron., 1998, vol. 38, no. 5, pp. 89–99 [Geomagn. Aeron. (Engl. Transl.), 1998, vol. 38, pp. 617–623].

    Google Scholar 

  • Karpachev, A.T. and Gasilov, N.A., Zonal and Meridional Wind Components Derived from Intercosmos-19 hmF2 Measurements, Adv. Space Res., 2001, vol. 27, no. 6/7, pp. 1245–1252.

    Article  Google Scholar 

  • Karpachev, A.T. and Gasilov, N.A., Causes of Longitude-Latitudinal Variations in the Ionospheric F2-Layer Maximum in Summer Nighttime Conditions, Int. J. Geomagn. Aeron., 2006, vol. 6, p. GI2006; doi:10.1029/2005GI000112.

    Article  Google Scholar 

  • Karpachev, A.T., Deminov, M.G., and Afonin, V.V., Model of the Mid-Latitude Ionospheric Trough on the Base of Cosmos-900 and Intercosmos-19 Satellites Data, Adv. Space Res., 1996, vol. 18, no. 6, pp. 221–230.

    Article  Google Scholar 

  • Karpachev, A.T., Deminov, M.G., and Afonin, V.V., Two Branches of Day-Time Winter Ionospheric Trough according to Cosmos-900 Data at F2-Layer Heights, Adv. Space Res., 1998, vol. 22, no. 6, pp. 877–882.

    Article  Google Scholar 

  • Karpachev, A.T., Gasilov, N.A., and Karpachev, O.A., Causes of NmF2 Longitudinal Variations at Mid- and Subauroral Latitudes under Summer Nighttime Conditions, Geomagn. Aeron., 2010, vol. 50, no. 4, pp. 507–513 [Geomagn. Aeron. (Engl. Transl.), 2010, vol. 50, pp. 482–488].

    Article  Google Scholar 

  • Krinberg, I.A. and Tashchilin, A.V., Ionosfera i plazmosfera (The Ionosphere and Plasmasphere), Moscow: Nauka, 1984.

    Google Scholar 

  • Lin, C. H., Liu, J.Y., Cheng, C.Z., Chen, C.H., Liu, C.H., Wang, W., Burns, A.G., and Lei, J., Three-Dimensional Ionospheric Electron Density Structure of the Weddell Sea Anomaly, J. Geophys. Res., 2009, vol. 114, p. A02312; doi:10.1029/2008JA013455.

    Article  Google Scholar 

  • Lisakov, Yu., Jorjio, V., Nikolaenko, N.V., and Ainbund, L.M. Observations of Low Intensity Particle Fluxes Inside the Region of the Ionospheric Main Trough and Their Variability, in Results of the ARCAD 3 Project and of Recent Programs in Magnetospheric and Ionospheric Physics, Toulouse: Cepadues, 1985, pp. 261–274.

    Google Scholar 

  • Meng, C.I., Diurnal Variations of the Auroral Oval Size, J. Geophys. Res., 1979, vol. 84, pp. 5319–5324.

    Article  Google Scholar 

  • Moffett, R.J. and Quegan, S., The Mid-Latitude Trough in the Electron Concentration of the Ionospheric F-Layer: A Review of Observations and Modeling, J. Atmos. Terr. Phys., 1983, vol. 45, pp. 315–343; doi:10.1016/S0021-9169(83)80038-5.

    Article  Google Scholar 

  • Pavlov, A.V. and Pavlova, N.M., Anomalous Nighttime Peaks in Diurnal Variations of NmF2 Close to the Geomagnetic Equator: A Statistical Study, J. Atmos. Sol.-Terr. Phys., 2007, vol. 69, pp. 1871–1883; doi:10.1016/j.jastp.2007. 07.003.

    Article  Google Scholar 

  • Penndorft, R., The Average Ionospheric Conditions over the Antarctic in Geomagnetism and Aeronomy, Antarct. Res. Ser. Am. Geophys. Union, 1965, vol. 4., pp. 1–45.

    Article  Google Scholar 

  • Rishbeth, H., Rishbeth, H., Thermospheric Winds and the F-Region: A Review, J. Atmos. Terr. Phys., 1972, vol. 34, no. 1, pp. 1–34.

    Article  Google Scholar 

  • Sitnov, Yu.S., Shubin, V.N., and Annakuliev, S.K., Rishbeth, H., Approximation of the Electron Density and Altitude at a Maximum of the Daytime Midlatitude Ionospheric F2 Region Using Simple Analytic Formulas, Geomagn. Aeron., 1992, vol. 32, no. 4, pp. 128–130.

    Google Scholar 

  • Takeda, M. and Yamada, Y., Rishbeth, H., Simulation of Ionospheric Electric Fields and Geomagnetic Field Variation by the Ionospheric Dynamo for Different Solar Activity, Ann. Geophys., 1987, vol. 5, no. 6, pp. 429–433.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. T. Karpachev.

Additional information

Original Russian Text © A.T. Karpachev, N.A. Gasilov, O.A. Karpachev, 2011, published in Geomagnetizm i Aeronomiya, 2011, Vol. 51, No. 6, pp. 828–840.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karpachev, A.T., Gasilov, N.A. & Karpachev, O.A. Morphology and causes of the Weddell Sea anomaly. Geomagn. Aeron. 51, 812–824 (2011). https://doi.org/10.1134/S0016793211050070

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016793211050070

Keywords

Navigation