Skip to main content
Log in

Comparison of ground-based and satellite measurements of atmospheric temperature in the mesopause region in high-latitude eastern Siberia

  • Published:
Geomagnetism and Aeronomy Aims and scope Submit manuscript

Abstract

The mesopause kinetic temperature at an altitude of 87 km measured with a SABER broadband radiometer installed on the TIMED satellite and the hydroxyl molecule rotational temperature measured with a ground-spectrograph installed in high-latitude eastern Siberia (Maimaga optical station; φ = 63°N, λ = 129.5°E) are compared. The data of the observations performed from 2002 to 2006 have been analyzed. The temperatures measured during the satellite passes at distances not larger than 300 km from the intersection of the spectrograph sighting line with the hydroxyl emitting layer (∼87 km) have been compared. An analysis of 130 cases of coincident measurements indicated that the average hydroxyl molecule rotational temperatures are systematically lower than the average kinetic temperature at an altitude of the hydroxyl layer measured with SABER by 4.4 K (with a standard deviation of 11.4 K). A seasonal dependence is observed regarding the difference between the ground-based and satellite measurements. The difference decreases from 10 K in January to zero towards March. However, the time variations in the temperature obtained with the ground-based device and on the satellite are similar. Based on the performed analysis, it has been concluded that a series of hydroxyl rotational temperatures can be used to study temperature variations on different time scales, including long-term trends at the temperature emission altitude (∼87 km).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ammosov, P.P. and Gavrilyeva, G.A., Infrared Digital Spectrograph for Measuring Hydroxyl Rotational Temperature, Prib. Tekh. Eksp., 2000, vol. 43, no. 6, pp. 792–797.

    Google Scholar 

  • Baker, D.J. and Stair, A.T., Jr., Rocket Measurements of the Altitude Distribution of the Hydroxyl Airglow, Phys. Scr., 1988, vol. 37, no. 4, pp. 611–622.

    Article  Google Scholar 

  • Burrage, M.D., Arvin, N., Skinner, W.R., and Hays, P.B., Observations of the O2 Atmospheric Band Nightglow by the High Resolution Doppler Imager, J. Geophys. Res., 1994, vol. 99A, pp. 15 017–15 023.

    Google Scholar 

  • Gavrilyeva, G.A. and Ammosov, P.P., Seasonal Variation in the Mesopause Temperature over Yakutsk (63°N, 129.5°E), Geomagn. Aeron., 2002, vol. 42, no. 2, pp. 279–283 [Geomagn. Aeron. (Engl. Transl.), 2002, vol. 42, pp. 267–271].

    Google Scholar 

  • Gerasimova, N.G. and Yakovleva, A.V., Set of High-Aperture Spectrographs with Diffraction Gratings, Prib. Tekh. Eksp., 1956, no. 1, pp. 83–86.

  • Kutepov, A.A. Feofilov, A.G., Marshall B.T., Gordley, L.L, Pesnel, W.D., Goldberg, R.A., and Russell III, J.M., SABER Temperature Observations in the Summer Polar Mesosphere and Lower Thermosphere: Importance of Accounting for the CO2 v2 Quanta V-V Exchange, in Geophys. Res. Lett., 2006, vol. 33, p. L21809; doi:10.1029/2006GL026591.

    Article  Google Scholar 

  • López-Gonzalez, M.J., García-Comas, M., Rodríguez, E., López-Puertas, M., Shepherd, M.G., Shepherd, G.G., Sargoytchev, S., Aushev, V.M., Smith, S.M., Mlynczak, M.G., Russell, J.M., Brown, S., Cho, Y.-M., and Wiens, R.H., Ground-Based Mesospheric Temperatures at Mid-Latitude Derived from O2 and OH Airglow SATI Data: Comparison with SABER Measurements, J. Atmos. Sol.-Terr. Phys., 2007, vol. 69, no. 17–18, pp. 2379–2390.

    Article  Google Scholar 

  • Mertens, C.J., Mlynczak, M.G., López-Puertas, M., Wintersteiner, P.P., Picard, R.H., Winick, J.R., Gordley, L.L., and Russell III, J.M., Retrieval of Mesospheric and Lower Thermospheric Kinetic Temperature from Measurements of CO2 15 μ Earth Limb Emission under Non-LTE Conditions, Geophys. Res. Lett., 2001, vol. 28, pp. 1391–1394.

    Article  Google Scholar 

  • Mertens, C.J., Schmidlin, F.J., Goldberg, R.A., Remsberg, E.E., Pesnell, W.D., Russell, J.M., Mlynczak, M.G., LópezPuertas, M., Wintersteiner, P.P., Picard, R.H., Winick, J.R., and Gordley, L.L., SABER Observations of Mesospheric Temperatures and Comparisons with Falling Sphere Measurements Taken during the 2002 Summer MaCWAVE Campaign, Geophys. Res. Lett., 2004, vol. 31, p. L03105; doi:10.1029/2003GL018605.

    Article  Google Scholar 

  • Mies, F.H., Calculated Vibrational Transition Probabilities of OH(X2II), J. Mol. Spectrosc., 1974, vol. 53, no. 2, pp. 150–180.

    Article  Google Scholar 

  • Mlynczak, M.G., Energetics of the Mesosphere and Lower Thermosphere and the SABER Experiment, Adv. Space Res., 1997, vol. 20, no. 6, pp. 1177–1183.

    Article  Google Scholar 

  • Mulligan, F.J. and Lowe, R.P., OH Equivalent Temperatures Derived from ACE-FTS and SABER Temperature Profiles-Comparison with OH*(3,1) Temperatures from Maynooth (53.2°N, 4.2°W), Ann. Geophys., 2008, vol. 26, no. 4, pp. 795–811.

    Article  Google Scholar 

  • Oberheide, J., Offermann, D., Russell III, J.M., and Mlynczak, M.G., Intercomparison of Kinetic Temperature from 15 μM CO2 Limb Emissions and OH(3,1) Rotational Temperature in nearly Coincident Air Masses: SABER, GRIPS, Geophys. Res. Lett., 2006, vol. 33, p. L14811; doi:10.1029/2006GL026439.

    Article  Google Scholar 

  • Scheer, J., Reisin, E.R., Gusev, O.A., French, W.J., Hernandez, G., Huppi, R., Ammosov, P.P., Gavrilyeva, G.A., and Offermann, D., Use of CRISTA Mesopause Region Temperatures for the Intercalibration of Ground-Based Instruments, J. Atmos. Sol.-Terr. Phys., 2006, vol. 68, no. 15, pp. 1698–1708.

    Article  Google Scholar 

  • Shefov, N.N., Semenov, A.I., and Khomich, V.Yu., Izluchenie verkhnei atmosfery-indikator ee struktury i dinamiki (Studying the Upper Atmosphere as an Indicator of Its Structure and Dynamics), Moscow: GEOS, 2006.

    Google Scholar 

  • Von Savigny, C., Eichmann, K.-U., Llewellyn, E.J., Bovensmann, H., Burrows, J.P., Bittner, M., Hoppner, K., Offermann, D., Taylor, M.J., Zhao, Y., Steinbrecht, W., and Winkler, P., First Near-Global Retrievals of OH Rotational Temperatures from Satellite-Based Meinel Band Emission Measurements, Geophys. Res. Lett., 2004, vol. 31, p. L15111; doi:10.1029/2004GL020410.

    Article  Google Scholar 

  • Winick, J., Wintersteiner, P.P., Picard, R.H., Esplin, D., Mlynczak, M.G., Russell III, J.M., and Gordley, L.L., OH Layer Characteristics during Unusual Boreal Winters of 2004 and 2006, J. Geophys. Res., 2009, vol. 114, p. A02303; doi:10.1029/2008JA013688.

    Article  Google Scholar 

  • Yee, J.H., Growley, G., Roble, R.G., Skinner, W.R., Burrage, M.D., and Hays, P.B., Global Simulations and Observations of OI (1 S), O2 (b1Σ), and OH Mesospheric Nightglow Emissions, J. Geophys. Res., 1997, vol. 102, pp. 19 949–19 968.

    Article  Google Scholar 

  • Zhao, Y., Taylor, M.J., and Chu, X., Comparison of Simultaneous Na Lidar and Mesospheric Nightglow Temperature Measurements and the Effects of Tides on the Emission Layer Heights, J. Geophys. Res., 2006, vol. 110, p. D09S07; doi:10.1029/2004JD005115.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © G.A. Gavrilyeva, P.P. Ammosov, I.I. Koltovskoi, 2011, published in Geomagnetizm i Aeronomiya, 2011, Vol. 51, No. 4, pp. 563–569.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gavrilyeva, G.A., Ammosov, P.P. & Koltovskoi, I.I. Comparison of ground-based and satellite measurements of atmospheric temperature in the mesopause region in high-latitude eastern Siberia. Geomagn. Aeron. 51, 557–563 (2011). https://doi.org/10.1134/S0016793211030066

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016793211030066

Keywords

Navigation