Skip to main content
Log in

Radiocarbon in polar ice: The mechanism by which radiocarbon is preserved in firn grains

  • Published:
Geomagnetism and Aeronomy Aims and scope Submit manuscript

Abstract

This work is devoted to the problem of localizing the 14C cosmogenic radionuclide in a firn layer covering glaciers. The data on 14C in ice samples from the GISP2 ice core drilled on a Greenland ice dome (Summit) are analyzed. It has been indicated that experimental values of the 14C concentration are systematically smaller than theoretically calculated values, which indicates that firn grains partially lose 14C. Diffusion of cosmogenic 14C in firn grains and hydration of 14CO2 in a disordered ice layer, which is formed on a firn grain surface and at the boundary between ice monocrystals, are considered. It has been indicated that these processes are among the main ones responsible for the level of radiocarbon concentration in firn and ice samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahn, J., Headly, M., Wahlen, M., Brook, E.J., Mayewski, P.A., and Taylor, K.C., CO2 Diffusion in Polar Ice: Observations from Naturally Formed CO2 Spikes in the Siple Dome (Antarctica) Ice Core, J. Glaciol., 2008, vol. 54, no. 187, pp. 685–695.

    Article  Google Scholar 

  • Albert, M.R. and Shultz, E.F., Snow and Firn Properties and Air-Snow Transport Processes at Summit, Greenland, Atmos. Environ., 2002, vol. 36, pp. 2789–2797.

    Article  Google Scholar 

  • Alley, R.B., The Younger Dryas Cold Interval as Viewed from Central Greenland, Quat. Sci. Rev., 2000, vol. 19, pp. 213–226.

    Article  Google Scholar 

  • Assonov, S.S., Brenninkmeijer, C.A.M., and Jöckel, P., The 18O Isotope Exchange Rate between Firn Air CO2 and the Firn Matrix at Three Antarctic Sites, J. Geophys. Res., 2005, vol. 110D, pp. 18310–18323.

    Article  Google Scholar 

  • Bender, M., Sowers, T., and Brook, E., Gases in Ice Cores, Proc. Nat. Acad. Sci. USA, 1997, vol. 94, pp. 8343–8349.

    Article  Google Scholar 

  • Blunier, T., Chappellaz, J., Schwander, J., Dallenbach, A., Stauffer, B., Stocker, T.F., Raynaud, D., Jouzel, J., Clausen, H.B., Hammer, C.U., and Johnsen, S.J., Asynchrony of Antarctic and Greenland Climate Change during the Last Glacial Period, Nature, 1998, vol. 394, pp. 739–743.

    Article  Google Scholar 

  • Dash, J.G., Rempel, A.W., and Wettlaufer, J.S., The Physics of Premelted Ice and Its Geophysical Consequences, Rev. Mod. Phys., 2006, vol. 78, pp. 695–741.

    Article  Google Scholar 

  • Delmas, R.J., Beer, J., Synal, H.-A., Muscheler, R., Petit, J.-R., and Pourchet, M., Bomb-Test 36Cl Measurements in Vostok Snow (Antarctica) and the Use of 36Cl as a Dating Tool for Deep Ice Cores, Tellus, 2004, vol. 56, pp. 492–498.

    Article  Google Scholar 

  • Dergachev, V.A., Dmitriev, P.B., Raspopov, O.M., and Jungner, H., Cosmic Ray Flux Variations, Modulated by the Solar and Earth’s Magnetic Fields, and Climate Changes. 1. Time Interval from the Present to 10–12 ka Ago (the Holocene Epoch), Geomagn. Aeron., 2006, vol. 46, no. 1, pp. 123–134 [Geomagn. Aeron. (Engl. Transl.), 2006, vol. 46, pp. 118–128].

    Article  Google Scholar 

  • Desilets, D. and Zreda, M., Spatial and Temporal Distribution of Secondary Cosmic-Ray Nucleon Intensities and Applications to in situ Cosmogenic Dating, Earth Planet. Sci. Lett., 2003, vol. 206, pp. 21–42.

    Article  Google Scholar 

  • Grannas, A.M. and 34 Co-Authors, An Overview of Snow Photochemistry: Evidence, Mechanisms and Impacts, Atmos. Chem. Phys., 2007, vol. 7, pp. 4329–4373.

    Article  Google Scholar 

  • Heisinger, B., Lal, D., Jull, A.J.T., Kubik, P., Ivy-Ochs, S., Neumaier, S., Knie, K., Lazarev, V., and Nolte, E., Production of Selected Cosmogenic Radionuclides by Muons. 1. Fast Muons, Earth Planet. Sci. Lett., 2002a, vol. 200, pp. 345–355.

    Article  Google Scholar 

  • Heisinger, B., Lal, D., Jull, A.J.T., Kubik, P., Ivy-Ochs, S., Knie, K., and Nolte, E., Production of Selected Cosmogenic Radionuclides by Muons. 2. Capture of Negative Muons, Earth Planet. Sci. Lett., 2002b, vol. 200, pp. 357–369.

    Article  Google Scholar 

  • Ikeda-Fukuzawa, T., Kawamura, K., and Hondoh, T., Mechanism of Molecular Diffusion in Ice Crystals, Mol. Simul., 2004, vol. 30, pp. 973–979.

    Article  Google Scholar 

  • Johnson, K.S., Carbon Dioxide Hydration and Dehydration Kinetics in Seawater, Limnol. Oceanogr., 1982, vol. 27, pp. 849–855.

    Article  Google Scholar 

  • Jull, A.J.T., Lifton, N., Phillips, W.M., and Quade, J., Studies of the Production Rate of Cosmic-Ray Produced 14C in Rock Surfaces, Nuclear Instrum. Meth. Phys. Res., 1994, vol. 92, pp. 308–310.

    Article  Google Scholar 

  • Lal, D., Jull, A.J.T., Burr, G.S., and Donahue, D.J., Measurements of in situ 14C Concentrations in Greenland Ice Sheet Project 2 Ice Covering a 17 kyr Time Span: Implications to Ice Flow Dynamics, J. Geophys. Res., 1997, vol. 102C, pp. 26505–26510.

    Article  Google Scholar 

  • Lal, D., Jull, A.J.T., Burr, G.S., and Donahue, D.J., On the Characteristics of Cosmogenic in situ 14C in Some GISP2 Holocene and Late Glacial Ice Samples, Nuclear Instrum. Meth. Phys. Res., 2000, vol. 172, pp. 623–631.

    Article  Google Scholar 

  • Lal, D., Jull, A.J.T., Donahue, D.J., Burr, G.S., Deck, B., Jouzel, J., and Steig, E., The Record of Cosmogenic in situ Produced 14C in Vostok and Taylor Dome Ice Samples: Implications for Strong Role of Wind Ventilation Processes, J. Geophys. Res., 2001, vol. 106D, pp. 31933–31941.

    Article  Google Scholar 

  • Lal, D., Jull, A.J.T., Pollard, D., and Vacher, L., Evidence for Large Century Time-Scale Changes in Solar Activity in the Past 32 kyr, Based on in situ Cosmogenic 14C in Ice at Summit, Greenland, Earth Planet. Sci. Lett., 2005, vol. 234, pp. 335–349.

    Article  Google Scholar 

  • Manca, C., Martin, C., Allouche, A., and Roubin, P., Experimental and Theoretical Reinvestigation of CO Adsorption on Amorphous Ice, J. Phys. Chem., 2001, vol. 105, pp. 12861–12869.

    Google Scholar 

  • Marley, N.A., Gaffney, J.S., Tackett, M.J., Sturchio, N.C., Heraty, L., Martinez, N., Hardy, K.D., Machany-Rivera, A., Guilderson, T., MacMillan, A., and Steelman, K., The Impact of Biogenic Carbon Sources on Aerosol Absorption in Mexico City, Atmos. Chem. Phys., 2009, vol. 9, pp. 1537–1549.

    Article  Google Scholar 

  • Masarik, J. and Beer, J., Simulation of Particle Fluxes and Cosmogenic Nuclide Production in the Earth’s Atmosphere, J. Geophys. Res., 1999, vol. 104D, pp. 12099–12111.

    Article  Google Scholar 

  • Masarik, J. and Reedy, R.C., Terrestrial Cosmogenic-Nuclide Production Systematics Calculated from Numerical Simulations, Earth Planet. Sci. Lett., 1995, vol. 136, pp. 381–395.

    Article  Google Scholar 

  • McCracken, K.G., Beer, J., and McDonald, F.B., The Long-Term Variability of the Cosmic Radiation Intensity at Earth as Recorded by the Cosmogenic Nuclides, in The Solar System and beyond: Ten Years of ISSI, Geiss, J. and Hultqvist, B., Eds., Bern: Int. Space Sci. Inst., 2005.

    Google Scholar 

  • Meese, D.A., Gow, A.J., Grootes, P.M., Mayewski, P.A., Ram, M., Stuiver, M., Taylor, K.C., Waddington, E.D., and Zielinski, G.A., The Accumulation Record from the GISP2 Core as an Indicator of Climate Change throughout the Holocene, Science, 1994, vol. 266, pp. 1680–1682.

    Article  Google Scholar 

  • Nesterenok, A.V. and Naidenov, V.O., Radiocarbon in the Antarctic Ice: The Formation of the Cosmic Ray Muon Component at Large Depths, Geomagn. Aeron., 2010, vol. 50, no. 1, pp. 138–144 [Geomagn. Aeron. (Engl. Transl.), 2010, vol. 50, p. 134].

    Article  Google Scholar 

  • Ocampo, J. and Klinger, J., Adsorption of N2 and CO2 on Ice, J. Colloid. Interface Sci., 1982, vol. 86, no. 2, pp. 377–383.

    Article  Google Scholar 

  • Petit, J.R., Jouzel, J., Raynaud, D., Barkov, N.I., Barnola, J.-M., Basile, I., Bender, M., Chappellaz, J., Davis, M., Delaygue, G., Delmotte, M., Kotlyakov, V.M., Legrand, M., Lipenkov, V.I., Lorius, C., Pepin, L., Ritz, C., Saltzman, E., and Stievenard, M., Climate and Atmospheric History of the Past 420 000 Years from the Vostok Ice Core, Antarctica, Nature, 1999, vol. 399, pp. 429–436.

    Article  Google Scholar 

  • Roessler, K., Suprathermal Chemistry in Space, Proc. Int. School of Physics “Enrico Fermi”, 111, Solid-State Astrophysics, Bussoletti and Strazzulla, Eds., Varenna, 1991, pp. 197–266.

  • Smith, A.M., Levchenko, V.A., Etheridge, D.M., Lowe, D.C., Hua, Q., Trudinger, C.M., Zoppi, U., and Elcheikh, A., In Search of in-situ Radiocarbon in Low Dome Ice and Firn, Nuclear Instrum. Meth. Phys. Res. B, 2000, vol. 172, pp. 610–622.

    Article  Google Scholar 

  • Van der Kemp, W.J.M., Alderliesten, C., Van der Borg, K., De Jong, A.F.M., Lamers, R.A.N., Oerlemans, J., Thomassen, M., and Van de Wal, R.S.W., In situ Produced 14C by Cosmic Ray Muons in Ablating Antarctic Ice, Tellus, 2002, vol. 54, no. 2, pp. 186–192.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © A.V. Nesterenok, V.O. Naidenov, 2011, published in Geomagnetizm i Aeronomiya, 2011, Vol. 51, No. 3, pp. 425–432.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nesterenok, A.V., Naidenov, V.O. Radiocarbon in polar ice: The mechanism by which radiocarbon is preserved in firn grains. Geomagn. Aeron. 51, 421–428 (2011). https://doi.org/10.1134/S0016793211020113

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016793211020113

Keywords

Navigation