Skip to main content
Log in

Verification of magnetic field models based on measurements of solar cosmic ray protons in the magnetosphere

  • Published:
Geomagnetism and Aeronomy Aims and scope Submit manuscript

Abstract

Measurements of solar cosmic ray (SCR) protons in the magnetosphere can be used to verify models of the Earth’s magnetic field. The latitudinal profiles of precipitating SCRs with energies of 1–90 MeV were measured on the CORONAS-F low-orbiting satellite during a strong magnetic storm on October 29–30, 2003. A flux of precipitating protons can remain equal to the interplanetary flux only due to a strong pitch angle diffusion that originates when the radius of the field line curvature is close to that of the particle rotation Larmor radius. The observed boundaries of the strong diffusion region can be compared with the boundaries anticipated according to the models of the magnetic field of the Earth’s magnetosphere. The adiabaticity parameter values, calculated for several instants of the CORONAS-F satellite pass based on the TS05 and parabolic models, do not always correspond to measurements. How possible changes in the model configurations of the magnetic field can allow us to eliminate discrepancies with the experiment and to explain why solar protons with energies of several megaelectronvolts penetrate deep in the Earth’s inner magnetosphere is considered here.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alexeev, I.I., Belenkaya, E.S., Bobrovnikov, S.Yu., and Kalegaev, V.V., Modeling of the Electromagnetic Field in the Interplanetary Space and in the Earth’s Magnetosphere, Space Sci. Rev., 2003, vol. 107, no. 1–2, pp. 7–26.

    Article  Google Scholar 

  • Alexeev, I.I. and Kalegaev, V.V., Magnetic Field and the Main Magnetospheric Current Systems, in “Plazmennaya geliogeofizika” (Plasma Heliogeophysics), Zelenyi, L.M. and Veselovsky, I.S., Eds., Moscow: IKI RAN, 2008, vol. 1, pp. 414–426.

    Google Scholar 

  • Anderson, B.J., Decker, R.B., and Paschalidis, N.P., Onset of Nonadiabatic Particle Motion in the Near-Earth Magnetotail, J. Geophys. Res., 1997A, vol. 102, p. 569.

    Google Scholar 

  • Dmirtiev, A.V., Chao, J.-K., Suvorova, A.V., Ackerson, K., Ishisaka, K., Kasaba, Y., Kojima, H., and Matsumoto, H., Indirect Estimation of the Solar Wind Conditions in 29–31 October 2003, J. Geophys. Res., 2005, vol. 110, p. A09S02.

    Article  Google Scholar 

  • Il’in, V.D., Kuznetsov, S.N., Panasyuk, M.I., and Sosnovets, E.N., Nonadiabatic Effects and the Boundary of Trapping the Earth Radiation Belt Protons, Izv. Akad. Nauk SSSR, Ser. Fiz., 1984, vol. 48, no. 11, pp. 2200–2203.

    Google Scholar 

  • Imhof, W., L., Chenette, D.L., Gaines, E.E., and Winningham, J.D., Characteristics of Electrons at the Trapping Boundary of the Radiation Belt, J. Geophys. Res., 1997, vol. 102A, pp. 95–104.

    Article  Google Scholar 

  • Kleimenova, N.G., Geomagnetic Pulsations, in Model’ Kosmosa (Space Model), Panasyuk, M.I., Ed., Moscow: KDU, 2007, vol. 1, pp. 611–626.

    Google Scholar 

  • Kozelov, B.V. and Kozelova, T.V., Dynamics of Domains of Nonadiabatic Particle Motion in the Near Magnetosphere during a Substorm, Geomagn. Aeron., 2003, vol. 43, no. 4, pp. 448–497 [Geomagn. Aeron., (Engl. Transl.) 2003, vol. 43, pp. 488–497].

    Google Scholar 

  • Kress, B.T., Hudson, M.K., and Slocum, P., Impulsive Solar Energetic Ion Trapping in the Magnetosphere during Geomagnetic Storms, Geophys. Res. Lett., 2005, vol. 32, p. L06108, doi: 10.1029/2005GL022373.

    Article  Google Scholar 

  • Kuznetsov, S.N. and Yushkov, B.Yu., Boundary of the Adiabatic Motion of a Charged Particle in a Dipole Magnetic Field, Fiz. Plazmy, 2002, vol. 28, no. 4, pp. 375–383 [Plasma Phys. Rep., (Engl. Transl.) 2002, vol. 28, no. 4, pp. 342–350].

    Google Scholar 

  • Kuznetsov, S.N., Kudela, K., and Fisher, S., Constrains on the Magnetospheric High Energy Oxygen Ions Supplied by Ionosphere, Adv. Space Res., 1988, vol. 8, no. 8, pp. 115–118.

    Article  Google Scholar 

  • Lazutin, L.L., Kuznetsov, S.N., and Panasyuk, M.I., Solar Cosmic Rays as a Source of the Temporary Inner Radiation Belts, Adv. Space Res., 2009, vol. 44, pp. 371–375.

    Article  Google Scholar 

  • Lazutin, L.L., Kuznetsov, S.N., and Podorolsky, A.N., Solar Proton Belts in the Inner Magnetosphere during Magnetic Storms, Proc. 2nd International Symposium on Solar Extreme Events: Fundamental Science and Applied Aspects, Nor-Amberd, 2005, Chilingarian, A. and Karapetyan, G., Eds., pp. 63–67.

  • Lazutin, L.L., Kuznetsov, S.N., and Podorol’skii, A.N., Dynamics of the Radiation Belt Formed by Solar Protons during Magnetic Storms, Geomagn. Aeron., 2007, vol. 47, no. 2, pp. 187–197 [Geomagn. Aeron., 2007, vol. 47, pp. 175–184].

    Article  Google Scholar 

  • Panasyuk, M.I., Kuznetsov, S.N., Lazutin, L.L., et al., Magnetic Storms in October 2003, Kosm. Issled., 2004, vol. 42, no. 5, pp. 489–534.

    Google Scholar 

  • Pereyaslova, N.K., Solar Protons in the Earth’s Magnetosphere, in Energichnye chastitsy v magnitosfere Zemli (Energetic Particles in the Earth’s Magnetosphere), Apatity: Akad. Nauk SSSR, 1982, pp. 3–25.

    Google Scholar 

  • Schulz, M., The Magnetosphere, in Geomagnetism, Jacobs, J.A., Ed., San Diego: Academic, 1991, chapter 2, pp. 87–293.

    Google Scholar 

  • Sergeev, V.A., Kuznetsov, S.N., and Gotselyuk, Yu.V., Dynamics of the Structure of the High-Latitude Magnetosphere according to the Data on Solar Electrons, Geomagn. Aeron., 1987, vol. 27, no. 3, pp. 440–447.

    Google Scholar 

  • Tsyganenko, N.A. and Sitnov, M.I., Modeling the Dynamics of the Inner Magnetosphere during Strong Geomagnetic Storms, J. Geophys. Res., 2005, vol. 110, p. A03208, doi: 10.10292004ja010798.

    Article  Google Scholar 

  • Yahnin, A.G., Sergeev, V.A., Gvozdevsky, B.B., and Vennerström, S., Magnetospheric Source Region of Discrete Auroras Inferred from Their Relationship with Isotropy Boundaries of Energetic Particles, Ann. Geophys., 1997, vol. 15, pp. 943–958.

    Article  Google Scholar 

  • Young, S.L., Denton, R.E., Anderson, B.J., and Hudson, M.K., Magnetic Field Line Curvature Induced by Pitch Angle Diffusion in the Inner Magnetosphere, J. Geophys. Res., 2008, vol. 113, p. A03210, doi: 10.1029/2006JA012133.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © L.L. Lazutin, E.A. Murav’eva, K. Kudela, M. Slivka, 2011, published in Geomagnetizm i Aeronomiya, 2011, Vol. 51, No. 2, pp. 202–213.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lazutin, L.L., Murav’eva, E.A., Kudela, K. et al. Verification of magnetic field models based on measurements of solar cosmic ray protons in the magnetosphere. Geomagn. Aeron. 51, 198–209 (2011). https://doi.org/10.1134/S0016793211010087

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016793211010087

Keywords

Navigation