Skip to main content
Log in

Model of intermittency of grand minimums and maximums in the solar dynamo

  • Published:
Geomagnetism and Aeronomy Aims and scope Submit manuscript

Abstract

The αΩ-dynamo model with casual fluctuations of parameter α reproduces all main indications of solar grand minimums and maximums. If we take the dependence of turbulent diffusivity on the magnetic field into account, we obtain the phenomenon of hysteresis, when two solutions are possible in a certain interval of dynamo number values: decaying oscillations of weak fields and magnetic cycles with a constant and a large amplitude, which are formed depending on initial conditions. Fluctuations in parameter α result in transitions between these regimes, and the computations indicate that magnetic cycles with a relative large amplitude alternate with epochs of weak magnetic fields. Such behavior can be used as a model of grand minimums and maximums of solar activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Belvedere, G., Kuzanyan, K.M., and Sokoloff, D.D., A Two-Dimensional Asymptotic Solution for a Dynamo Wave in the Light of the Solar Internal Rotation, Astron. Astrophys., 2000, vol. 315, pp. 778–790.

    Google Scholar 

  • Brandenburg, A, Meinel, R, Moss, D, and Tuominen, I., Variation of Even and Odd Parity in the Solar Dynamo, Proc. IAU Symp. 138 Solar Photosphere: Structure, Convection and Magnetic Fields, Stenflo, J.O., Ed., Dordrecht: Kluwer, 1990, p. 379.

    Google Scholar 

  • Choudhuri, A.R., Stochastic Fluctuations of the Solar Dynamo, Astron. Astrophys., 1992, vol. 253, pp. 277–285.

    Google Scholar 

  • Durney, B.R. and Latour, J., On the Angular Momentum Loss of Late-Type Stars, Geophys. Astrophys. Fluid Dyn., 1978, vol. 9, pp. 241–255.

    Article  Google Scholar 

  • Eddy, J.A., The Case of the Missing Sunspots, Sci. Am., 1977, vol. 236, no. 5, pp. 80–88.

    Article  Google Scholar 

  • Hoyng, P., Turbulent Transport of Magnetic Fields. III—Stochastic Excitation of Global Magnetic Modes, Astrophys. J., 1988, vol. 332, pp. 857–871.

    Article  Google Scholar 

  • Küker, M., Arlt, R., and Rüdiger, G., The Maunder Minimum as Due to Magnetic Lambda-Quenching, Astron. Astrophys., 1999, vol. 343, pp. 977–982.

    Google Scholar 

  • Kitchatinov, L.L. and Pipin, V.V., Solar Torsional Oscillations and the Grand Activity Cycle as a Consequence of Interaction between the Magnetic Field and Rotation, Astron. Rep., 1998, vol. 42, pp. 808–812.

    Google Scholar 

  • Kitchatinov, L.L., Pipin, V.V., Makarov, V.I., and Tlatoiv, A.G., Solar Torsional Oscillations and the Grand Activity Cycle, Sol. Phys., 1999, vol. 189, pp. 227–239.

    Article  Google Scholar 

  • Kitchatinov, L.L., Pipin, V.V., and Rüdiger, G., Turbulent Viscosity, Magnetic Diffusivity, and Heat Conductivity under the Influence of Rotation and Magnetic Field, Astron. Nachr., 1994, vol. 315, pp. 157–170.

    Article  Google Scholar 

  • Kitchatinov, L.L., Rüdiger, G., and Küker, M., Lambda-Quenching as the Nonlinearity in Stellar-Turbulence Dynamos, Astron. Astrophys., 1994, vol. 292, pp. 125–132.

    Google Scholar 

  • Komitov, B.P. and Kaftan, V.I., Solar Activity Variations for the Last Millennia. Will the Next Long-Period Solar Minimum Be Formed?, Geomagn. Aeron., 2003, vol. 43, pp. 553–561.

    Google Scholar 

  • Mordvinov, A.V. and Kramynin, A.P., Long-Term Changes in Sunspot Activity, Occurrence of Grand Minima, and Their Future Tendencies, Sol. Phys., 2010, vol. 264, pp. 269–278.

    Article  Google Scholar 

  • Nagaya, K., Kitazawa, K., Masuda, K., et al., Variation of Solar “11-Year Cycle” during the Grand Solar Minimum in the 4th Century BC by Measurement of 14C Content in Tree Rings, Proc. 30th ICRC, Mexico, 2008, vol. 1, pp. 521–524.

    Google Scholar 

  • Nagovitsyn, Yu.A., Solar Cycles during the Maunder Minimum, Astron. Lett., 2007, vol. 33, no. 5, pp. 340–345.

    Article  Google Scholar 

  • Nesme-Ribes, E., Sokoloff, D., Ribes, J.C., and Kremliovsky, M., The Maunder Minimum and the Solar Dynamo, Proc. the NATO Advanced Research Workshop The Solar Engine and Its Influence on Terrestrial Atmosphere and Climate, Paris, 1993, Nesme-Ribes, E., Ed., Berlin: Springer, 1994, p. 71.

    Google Scholar 

  • Parker, E.N., Hydromagnetic Dynamo Models, Astrophys. J., 1955, vol. 122, p. 293.

    Article  Google Scholar 

  • Petrovay, K. and Moreno-Insertis, F., Turbulent Erosion of Magnetic Flux Tubes, Astrophys. J., 1997, vol. 485, p. 398.

    Article  Google Scholar 

  • Rüdiger, G. and Kitchatinov, L.L., Alpha-Effect and Alpha-Quenching, Astron. Astrophys., 1993, vol. 269, pp. 581–588.

    Google Scholar 

  • Ruzmaikin, A.A, Order and Chaos in the Solar Cycle, Proc. IAU Symp. 138 Solar Photosphere: Structure, Convection and Magnetic Fields, Stenflo, J.O., Ed., Dordrecht: Kluwer, 1990, p. 343.

    Google Scholar 

  • Ruzmaikin, A.A, Non-Linear Problems of the Solar Dynamo, in Stellar and Planetary Magnetism, Soward, A.M., Ed., New York: Gordon Breach Sci. Publ., 1983, p. 151.

    Google Scholar 

  • Saar, S.H and Baliunas, S.L, Recent Advances in Stellar Cycle Research, Proc. the Solar Cycle Workshop, ASP Conf. Ser. 27, 1992, Harvey, K.L., Ed., pp. 150–167.

  • Schove, D.J., The Sunspot Cycle, 649 B.C. to A.D. 2000, J. Geophys. Res., 1955, vol. 60, no. 2, pp. 127–146.

    Article  Google Scholar 

  • Skumanich, A., Time Scales for CA II Emission Decay, Rotational Braking, and Lithium Depletion, Astrophys. J., 1972, vol. 171, p. 565.

    Article  Google Scholar 

  • Sokoloff, D.D. and Nesme-Ribes, E., The Maunder Minimum: A Mixed-Parity Dynamo Mode?, Astron. Astrophys., 1994, vol. 288, pp. 293–298.

    Google Scholar 

  • Solanki, S.K. and Usoskin, I.G., Kromer, B., et al., Unusual Activity of the Sun during Recent Decades Compared to the Previous 11 000 Years, Nature, 2004, vol. 431, no. 7012, pp. 1084–1087.

    Article  Google Scholar 

  • Usoskin, I.G., Solanki, S.K., and Kovaltsov, G.A., Grand Minima and Maxima of Solar Activity: New Observational Constraints, Astron. Astrophys., 2007, vol. 471, no. 1, pp. 301–309.

    Article  Google Scholar 

  • Vainshtein, S.I., Zel’dovich, Ya.B., and Ruzmaikin, A.A., Turbulentnoe dinamo v astrofizike (Turbulent Dynamo in Astrophysics), Moscow: Nauka, 1980.

    Google Scholar 

  • Vitinsky, Yu.I., Kopetsky, M., and Kuklin, G.V., Statistika pyatnoobrazovatel’noi deyatel’nosti Solntsa (Sunspot Formation Activity Statistics), Moscow: Nauka, 1986.

    Google Scholar 

  • Weiss, N.O., Cattaneo, F., and Jones, CA., Periodic and Aperiodic Dynamo Waves, Geophys. Astrophys. Fluid Dyn., 1984, vol. 30, pp. 305–341.

    Article  Google Scholar 

  • Wright, J.T., Do We Know of Any Maunder Minimum Stars?, Astron. J., 2004, vol. 128, pp. 1273–1278.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © L.L. Kitchatinov, S.V. Olemskoy, 2010, published in Solnechno-Zemnaya Fizika, 2010, Vol. 15, pp. 3–8.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kitchatinov, L.L., Olemskoy, S.V. Model of intermittency of grand minimums and maximums in the solar dynamo. Geomagn. Aeron. 50, 927–932 (2010). https://doi.org/10.1134/S0016793210080013

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016793210080013

Keywords

Navigation