Skip to main content
Log in

Modeling of nonmigrating tides in the middle atmosphere

  • Published:
Geomagnetism and Aeronomy Aims and scope Submit manuscript

Abstract

On the basis of calculations using the general circulation model of the middle and upper atmosphere, the relative role of sources of nonmigrating tides distributed in atmosphere has been investigated. It is shown that in winter, when planetary waves in stratosphere are well developed, the main contribution to the generation of nonmigrating tides is caused by nonlinear interaction between migrating tides and a quasi-stationary planetary wave with zonal wave number 1 (SPW1). Taking into account the longitudinal ozone inhomogeneities in the model leads to the occurrence of additional sources of nonmigrating tides caused by longitudinally inhomogeneous heating of the atmosphere, the contribution of which can be comparable to that from nonlinear interaction under an attenuating amplitude of SPW1 in the stratosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Angelats i Coll, M. and Forbes, J.M., Nonlinear Interaction in the Upper Atmosphere: The s = 1 and s = 3 Nonmigrating Semidiurnal Tides, J. Geophys. Res., 2002, vol. 107A, p. 1157.

    Article  Google Scholar 

  • Chapman, S. and Lindzen, R., Atmospheric Tides: Thermal and Gravitational. Translated under the title Atmosfernye prilivy: Termicheskie i gravitatsionnye, Moscow: Mir, 1972.

  • Forbes, J.M., Tidal and Planetary Waves. The Upper Mesosphere and Lower Thermosphere: A Review of Experiment and Theory, Geophys. Monogr. Am. Geophys. Union, vol. 87, 1995, pp. 67–87.

    Google Scholar 

  • Forbes, J.M., Hagan, M.E., Zhang, X., and Hamilton, K., Upper Atmosphere Tidal Oscillations Due to Latent Heat Release in the Tropical Troposphere, Ann. Geophys., 1997, vol. 15, no. 9, pp. 1165–1175.

    Article  Google Scholar 

  • Fortuin, J.P.F. and Langematz, U., An Update on the Global Ozone Climatology and on Concurrent Ozone and Temperature Trends, Proc. SPIE, Atmospheric Sensing Modelling, 1995, pp. 207–216.

  • Fröhlich, K., Pogoreltsev, A., and Jacobi, Ch., Numerical Simulation of Tides, Rossby and Kelvin Waves with the COMMA-LIM Model, Adv. Space Res., 2003, vol. 32, no. 5, pp. 863–868.

    Article  Google Scholar 

  • GOME Users Manual, Bednarz, F., Ed., ESA Publications Division. SP-1182, Europ. Space Res. Technol. Centre, Netherlands, 1995.

    Google Scholar 

  • Grieger, N., Schmitz, G., and Achatz, U., The Dependence of the Nonmigrating Diurnal Tide in the Mesosphere and Lower Thermosphere on Stationary Planetary Waves, J. Atmos. Sol.-Terr. Phys., 2004, vol. 66, no. 6–9, pp. 733–754.

    Article  Google Scholar 

  • Hagan, M.E. and Forbes, J.M., Migrating and Nonmigrating Diurnal Tides in the Upper Atmosphere Excited by Tropospheric Latent Heat Release, J. Geophys. Res., 2002, vol. 107D, p. 4754.

    Article  Google Scholar 

  • Hagan, M.E. and Forbes, J.M., Migrating and Nonmigrating Semi-Diurnal Tides in the Upper Atmosphere Excited by Tropospheric Latent Heat Release, J. Geophys. Res., 2003, vol. 108A, p. 1062.

    Article  Google Scholar 

  • Kalnay, E., Kanamitsu, M., Kistler, R., et al., The NCEP/NCAR Reanalysis Project, Bull. Am. Meteorol. Soc., 1996, vol. 77, no. 3, pp. 437–471.

    Article  Google Scholar 

  • Lindzen, R.S., Atmospheric Tides, Ann. Rev. Earth Planet. Sci., 1979, vol. 7, pp. 199–225.

    Article  Google Scholar 

  • Newmann, P.A., Nash, E.R., and Rosenfield, J.E., What Controls the Temperature of the Arctic Stratosphere during the Spring?, J. Geophys. Res., 2001, vol. 106D, pp. 19 999–20 010.

    Google Scholar 

  • Oberheide, J. and Gusev, O.A., Observations of the Migrating and Nonmigrating Diurnal Tides in the Equatorial Lower Thermosphere, Geophys. Res. Lett., 2002, vol. 29, no. 24, p. 2167.

    Article  Google Scholar 

  • Oberheide, J., Hagan, M.E., Roble, R.G., and Offermann, D., Sources of Nonmigrating Tides in the Tropical Middle Atmosphere, J. Geophys. Res., 2002, vol. 107D, p. 4567.

    Article  Google Scholar 

  • Pogoreltsev, A.I., Generation of Normal Atmospheric Modes by Stratospheric Oscillations, Izv. Akad. Nauk, Fiz. Atmos. Okeana, 2007, vol. 43, no. 4, pp. 463–475.

    Google Scholar 

  • Pogoreltsev, A.I., Suvorova, E.V., Fedulina, I.N., and Hanna, E., Three-Dimensional Climatic Model of Ozone Distribution in the Middle Atmosphere, in Uchenye zapiski Rossiiskogo gosudarstvennogo gidrometeorologicheskogo universiteta (Scientific Records of the Russian State Hydrometeorological University), St. Petersburg: RGGMU, 2009, issue 10, pp. 43–52.

    Google Scholar 

  • Pogoreltsev, A.I., Kanukhina, A.Yu., Suvorova, E.V., and Savenkova, E.N., Variability of Planetary Waves as a Signature of Possible Climatic Changes, J. Atmos. Sol.-Terr. Phys., 2009, vol. 71, no. 14–15, pp. 1529–1539.

    Article  Google Scholar 

  • Pogoreltsev, A.I., Vlasov, A.A., Fröhlich, K., and Jacobi, Ch., Planetary Waves in Coupling the Lower and Upper Atmosphere, J. Atmos. Sol.-Terr. Phys., 2007, vol. 69, no. 17–18, pp. 2083–2101.

    Article  Google Scholar 

  • Portnyagin, Y.I., Forbes, J.M., Makarov, N.A., Merzlyakov, E.G., and Palo, S., The Summertime 12-H Wind Oscillation with Zonal Wavenumber S = 1 in the Lower Thermosphere over the South Pole, Ann. Geophys., 1998, vol. 16, no. 7, pp. 828–837.

    Google Scholar 

  • Portnyagin, Yu.I., Forbes, J.M., Makarov, N.A., and Merzlyakov, E.G., Basic Regularities of Intradiurnal Wind Variations in the Lower Thermosphere over the South Pole, Dokl. Akad. Nauk, 1996, vol. 349, no. 1, pp. 104–105 [Dokl. Earth. Sci., 1996, vol. 349, no. 5, pp. 866–867].

    Google Scholar 

  • Randel, W.J. and Wu, F., A Stratospheric Ozone Profile Data Set for 1979–2005: Variability, Trends, and Comparisons with Column Ozone Data, J. Geophys. Res., 2007, vol. 112, p. D06313.

    Article  Google Scholar 

  • Spizzichino, A., Etude des Interactions Entre les Differentes Composantes du Vent Dans la Haute Atmosphere: 3e. Partie, Ann. Geophys., 1969, vol. 25, no. 4, pp. 773–783.

    Google Scholar 

  • Suvorova, E.V. and Pogoreltsev, A.I., Effect of Longitudinal Ozone Inhomogeneities on Stationary Planetary Waves and Thermodynamic Regime of the Middle Atmosphere, in Fizika okruzhayushchei sredy (Environmental Physics), Tomsk: Tomsk. Gos. Univ., 2008, pp. 93–96.

    Google Scholar 

  • Tsuda, T. and Kato, S., Diurnal Non-Migrating Tides Excited by a Differential Heating Due to Land-Sea Distribution, J. Meteorol. Soc. Japan, 1989, vol. 67, no. 1, pp. 43–54.

    Google Scholar 

  • Uppala, S.M., Kallberg, P.W., Simmons, A.J., et al., The ERA-40 Re-Analysis, Q. J. R. Meteorol. Soc., 2005, vol. 131, no. 612, pp. 2961–3012.

    Article  Google Scholar 

  • Yamashita, K., Miyahara, S., Miyoshi, Y., Kawano, K., and Ninomiya, J., Seasonal Variation of Non-Migrating Semidiurnal Tide in the Polar MLT Region in a General Circulation Model, J. Atmos. Sol.-Terr. Phys., 2002, vol. 64, no. 8–11, pp. 1083–1094.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Suvorova.

Additional information

Original Russian Text © E.V. Suvorova, A.I. Pogoreltsev, 2011, published in Geomagnetizm i Aeronomiya, 2011, Vol. 51, No. 1, pp. 107–118.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suvorova, E.V., Pogoreltsev, A.I. Modeling of nonmigrating tides in the middle atmosphere. Geomagn. Aeron. 51, 105–115 (2011). https://doi.org/10.1134/S0016793210061039

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016793210061039

Keywords

Navigation