Skip to main content
Log in

Seasonal temperature variations near the mesopause according to the hydroxyl emission measurements in Zvenigorod

  • Published:
Geomagnetism and Aeronomy Aims and scope Submit manuscript

Abstract

The rotational temperatures of hydroxyl molecules with different vibrational excitation, which were used to determine the seasonal variations in the vertical temperature distribution near the mesopause at altitudes of 85–90 km, have been obtained based on the spectral measurements of the atmospheric nightglow at IFA RAN observatory in Zvenigorod. The obtained characteristics of the annual and semiannual harmonics have been compared with their lidar and satellite measurements and model representations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • G. B. Burns, W. J. R. Jrench, P. A. Greet, et al., “Seasonal Variations and Inter-Year Trends in 7 Years of Hydroxyl Airglow Rotational Temperatures at Davis Station (69° S, 78° E), Antarctica,” J. Atmos. Solar-Terr. Phys. 64(8–11), 1167–1174 (2002).

    Article  Google Scholar 

  • V. V. Bakanas and V. I. Perminov, “Some Features in the Seasonal Behavior of the Hydroxyl Emission Characteristics,” Geomagn. Aeron. 43(3), 389–396 (2003) [Geomagn. Aeron. 43, 363–369 (2003)].

    Google Scholar 

  • M. A. Berg and N. N. Shefov, “Hydroxyl Emission with Different Oscillatory Excitation,” Polyarn. Siyaniya Svechenie Nochnogo Neba, No. 10, 19–23 (1963).

  • Brasseur and S. Solomon, Aeronomy of the Middle Atmosphere (Kluwer Academic Publishers Group, 2005).

  • G. H. Choi, K. Monson, V. B. Wickwar, and D. Rees, “Seasonal Variations of Temperature near the Mesopause from Fabry-Perot Interferometer Observations of OH Meinel Emissions,” Adv. Space Res. 21(6), 843–846 (1998).

    Article  Google Scholar 

  • R. T. Clancy, D. W. Rush, and M. T. Callan, “Temperature Minima in the Average Thermal Structure of the Middle Mesosphere (70–80 km) from Analysis of 40- to 92-km SME Global Temperature Profiles,” J. Geophys. Res. 99D, 19 001–19 020 (1994).

    Google Scholar 

  • B. R. Clemesha, K. Takahashi, and P. P. Batista, “Mesopause Temperatures at 23° S,” J. Geophys. Res. 95D, 7677–7681 (1990).

    Article  Google Scholar 

  • G. A. Gavrilyeva and P. P. Ammosov, “Near-Mesopause Temperatures Registered over Yakutia,” J. Atmos. Solar-Terr. Phys. 64(8–11), 985–990 (2002).

    Article  Google Scholar 

  • N. G. Gerasimova and A. V. Yakovleva, “The Set of High-Aperture Spectrographs with Diffraction Gratings,” Prib. Tekh. Eksp., No. 1, 83–86 (1956).

  • A. V. Kharitonov, E. A. Glushkova, A. N. Knyazeva, N. L. Morozova, V. T. Rebristyi, T. V. Sokodovnikov, V. N. Tereshchenko, and L. D. Frishberg, Spectrometric Standards for Observation of Planets and Comets and Certain Problems of Stellar Spectrophotometry, (Nauka, Alma-Ata, 1972) [in Russian].

    Google Scholar 

  • G. B. Kistiakowsky and F. D. Tabbutt, “Gaseous Detonations. XII. Rotational Temperatures of the Hydroxyl Free Radicals,” J. Chem. Phys. 30(2), 577–581 (1959).

    Article  Google Scholar 

  • V. I. Krassovsky, B. P. Potapov, A. I. Semenov, M. V. Shagaev, N. N. Shefov, and V. G. Sobolev, “On the Equilibrium Nature of the Rotational Temperature of Hydroxyl Airglow,” Planet. Space Sci. 25(6), 596–597 (1977).

    Article  Google Scholar 

  • S. R. Langhoff, H. J. Werner, and P. Rosmus, “Theoretical Transition Probabilities for the OH Meinel System,” J. Mol. Spectrosc. 118(4), 507–529 (1986).

    Article  Google Scholar 

  • J. J. Lopez-Moreno, R. Rodrigo, F. Moreno, et al., “Altitude Distribution of Vibrationally Excited States of Atmospheric Hydroxyl at Levels v = 2 to v = 7,” Planet. Space Sci. 35(8), 1029–1038 (1987).

    Article  Google Scholar 

  • F. J. Mulligan, D. F. Horgan, J. G. Galligan, and E. M. Griffin, “Mesopause Temperatures and Integrated Band Brightnesses Calculated from Airglow OH Emissions Recorded at Maynooth (53.2° N, 6.4° W) during 1993,” J. Atmos. Solar-Terr. Phys. 57(13), 1623–1637 (1995).

    Article  Google Scholar 

  • R. J. Niciejewski and T. L. Killeen, “Annual and Semi-Annual Temperature Oscillations in the Upper Mesosphere,” Geophys. Res. Lett. 22(23), 3243–3246 (1995).

    Article  Google Scholar 

  • D. Offermann and R. Gerndt, “Upper Atmosphere Temperatures from OH*-Emissions,” Adv. Space Res. 10(12), 217–221 (1990).

    Article  Google Scholar 

  • V. I. Perminov, A. I. Semenov, and K. N. Shefov, “Deactivation of the Hydroxyl Molecule Oscillatory States by Atomic and Molecular Oxygen in the Mesopause Region,” Geomagn. Aeron. 38(6), 100–105 (1998) [Geomagn. Aeron. 38, (1998)].

    Google Scholar 

  • V. I. Perminov, A. I. Semenov, N. N. Shefov, and V. V. Tikhonova, “Estimation of the Seasonal Variations in the Hydroxyl Emitting Layer Height in the Upper Atmosphere,” Geomagn. Aeron. 33(3), 113–120 (1993).

    Google Scholar 

  • N. N. Pertsev and V. I. Perminov, “Response of the Mesopause Airglow to Solar Activity Inferred from Measurements at Zvenigorod, Russia,” Ann. Geophys. 26(5), 1049–1056 (2008).

    Article  Google Scholar 

  • J. M. Picone, A. E. Hedin, D. P. Drob, and A. C. Aikin, “NRLMSISE-00 Empirical Model of the Atmosphere: Statistical Comparisons and Scientific Issues,” J. Geophys. Res. 107A, 1468 (2002).

    Article  Google Scholar 

  • A. I. Semenov and N. N. Shefov, “Empirical Model of Variations in the Hydroxyl Emission,” Geomagn. Aeron. 36(4), 68–85 (1996).

    Google Scholar 

  • C. Y. She and U. Zhan, “Concept of a Two-Level Mesopause: Support through New Lidar Observations,” J. Geophys. Res. 103D, 5855–5863 (1998).

    Article  Google Scholar 

  • C. Y. She and R. P. Lowe, “Seasonal Temperature Variations in the Mesopause Region at Midlatitudes: Comparison of Lidar and Hydroxyl Rotational Temperatures Using WINDII/UARS OH Height Profiles,” J. Atmos. Solar-Terr. Phys. 60, 1573–1583 (1998).

    Article  Google Scholar 

  • N. N. Shefov, A. I. Semenov, and V. Yu. Khomich, Atmospheric Emission as an Indicator of the Structure and Dynamics of the Atmosphere (Geos, Moscow, 2006), [in Russian].

    Google Scholar 

  • G. G. Sivjee and R.M. Hamwey, “Temperature and Chemistry of the Polar Mesopause OH,” J. Geophys. Res. 92A, 4663–4672 (1987).

    Article  Google Scholar 

  • J. Taylor, Introduction to the Theory of Errors (Mir, Moscow, 1985).

    Google Scholar 

  • T. L. Toroshelidze, “Measurements of the O2 and OH Atmospheric Bands in Nightglow,” Astrophys. Space Sci. 215, 11–15 (1994).

    Article  Google Scholar 

  • J. H. Yee, G. Crowley, R. G. Roble, et al., “Global Simulations and Observations of O(1S), O2(1Σ) and OH Mesospheric Nightglow Emissions,” J. Geophys. Res. 102A, 19949–19968 (1997).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Perminov.

Additional information

Original Russian Text © V.I. Perminov, 2009, published in Geomagnetizm i Aeronomiya, 2009, Vol. 49, No. 6, pp. 835–842.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Perminov, V.I. Seasonal temperature variations near the mesopause according to the hydroxyl emission measurements in Zvenigorod. Geomagn. Aeron. 49, 797–804 (2009). https://doi.org/10.1134/S0016793209060139

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016793209060139

Keywords

Navigation