Skip to main content
Log in

Atmospheric discharge as a source of emission during the Tunguska disaster

  • Published:
Geomagnetism and Aeronomy Aims and scope Submit manuscript

Abstract

Based on the fact that such events as an explosion of the Tunguska cosmic body, which caused the fall of trees in a wide area and the release of radiant energy during the Tunguska disaster, proved to be separated not only in space but also in time, it is concluded that these events are interrelated but different. The assumption is justified that the emission during the Tunguska disaster was caused by the atmospheric discharge at altitudes of 10–90 km above the Earth’s surface. The emission energy, released during this discharge, could reach ∼1010 J.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. S. Astapovich, “Great Tunguska Meteorite: Results of Studies,” Priroda, No. 3, 13–23 (1951).

  2. V. A. Bronshten, “Electric and Electromagnetic Phenomena Accompanying Flight of Meteors,” Astron. Vestn. 25(2), 490–504 (1991).

    Google Scholar 

  3. W. D. Crozier, “Dust Devil Properties,” J. Geophys. Res. 75(24), 4583–4585 (1970).

    Article  Google Scholar 

  4. H. F. Eden and B. Vonnegut, “Electrical Breakdown Caused by Dust Motion in Low-Pressure Atmosphere: Considerations for Mars,” Science 180(4089), 962–963 (1973).

    Article  Google Scholar 

  5. V. G. Fast, A. P. Brannik, and S. A. Razin, “On the Role of Felled Wood Directions in the Region of the Tunguska Meteorite Fall,” in Problems of Meteoritics, Ed. by N. V. Vasil’eva (TGU, Tomsk, 1976), pp. 39–51 [in Russian].

    Google Scholar 

  6. V. G. Fesenko, “Atmospheric Turbidity Caused by the Tunguska Meteorite Fall on June 30, 1908,” Meteoritika, No. 6, 8–12 (1949).

  7. K. P. Florensky, B. I. Vronskii, Yu. M. Emel’yanov, I. T. Zotkin, and O. A. Kirova, “Preliminary Results of the Tunguska Meteoritic Expedition of 1958,” Meteoritika, No. 19, 103–134 (1960).

  8. O. G. Gladysheva, “To the Problem of the Tunguska Meteorite Substance,” Astron. Vestn. 41(4), 345–352 (2007).

    Google Scholar 

  9. O. G. Gladysheva, Preprint No. 1787.31, FTI (2005).

  10. O. G. Gladysheva, “Comet Structure of the Tunguska Body,” in Proceedings of the Jubilee Conference of the Russian Geographic Society “100-Year Anniversary of the Tunguska Comet Body”, Ed. by K. K. Khazanovich-Vul’f (St. Petersburg, 2008), pp. 29–32 [in Russian].

  11. S. P. Golenetskii and V. V. Stepanok, “Certain Features of the Local Structure of the Tunguska Disaster that Occurred in 1908,” in Meteoritic Studies in Siberia, Ed. by Yu. A. Dolgov (Nauka SO, Novosibirsk, 1984) [in Russian].

    Google Scholar 

  12. R. C. Harrison and K. S. Carslaw, “Ion-Aerosol-Cloud Processes in the Lower Atmosphere,” Rev. Geophys. 41(3), 1012–1037 (2003).

    Article  Google Scholar 

  13. A. K. Kamra, “Measurements of the Electrical Properties of Dust Storms,” J. Geophys. Res. 77(30), 5856–5869 (1972).

    Article  Google Scholar 

  14. O. A. Kirova, “On Mineralogical Studies of Soil Samples from the Tunguska Meteorite Fall Region, Taken by the Expedition in 1958,” Meteoritika, No. 20, 32–39 (1961).

  15. V. G. Konenkin, “Reports of Eyewitnesses to the Tunguska Meteorite of 1908,” Probl. Tungus. Meteor., No. 2, 31–35 (1967).

  16. E. L. Krinov, Tunguska Meteorite (Akad. Nauk SSSR, Moscow, 1949) [in Russian].

    Google Scholar 

  17. E. L. Krinov, Messengers of the Universe (GIGL, Moscow, 1963) [in Russian].

    Google Scholar 

  18. L. A. Kulik, “Data on the Tunguska Meteorite by 1939,” Dokl. Akad. Nauk SSSR 22(8), 520–524 (1939).

    Google Scholar 

  19. L. A. Kulik, “To the History of a Bolide of June 30, 1908,” Dokl. Akad. Nauk SSSR, Ser. A, No. 23, 393–394 (1927).

  20. G. Longo, R. Serra, S. Cecchini, and M. Galli, “Search for Microremnants of the Tunguska Cosmic Body,” Planet. Space Sci. 42(2), 163–177 (1994).

    Article  Google Scholar 

  21. V. V. Muchnik, Thunderstorm Physics (Gidrometeoizdat, Leningrad, 1974) [in Russian].

    Google Scholar 

  22. R. Roussel-Dupre and A. V. Gurevich, “On Runaway Breakdown and Upward Propagating Discharges,” J. Geophys. Res. 101A, 2297–2311 (1996).

    Article  Google Scholar 

  23. D. D. Sentman, E. N. Wescott, D. L. Osborne, et al., “Preliminary Results from the Sprites95 Campaign: 1. Red Sprites,” Geophys. Res. Lett. 22(10), 1205–1208 (1995).

    Article  Google Scholar 

  24. A. A. Sickafoose, J. E. Colwell, M. Horanyi, and S. Robertson, “Experimental Investigations on Photoelectric and Triboelectric Charging of Dust,” J. Geophys. Res. 106A, 8343–8456 (2001).

    Article  Google Scholar 

  25. I. M. Suslov, “Examination of Eyewitnesses to the Tunguska Disaster of 1926,” Probl. Tungus. Meteor., No. 2, 21–30 (1967).

  26. N. V. Vasil’ev, “State of the Tunguska Meteorite Problem at the Beginning of 1974,” in Problems of Meteoritics, Ed. by V. S. Sobolev (Nauka, Novosibirsk, 1975), pp. 3–12 [in Russian].

    Google Scholar 

  27. V. A. Vorob’ev and D. V. Demin, “New Results of Studying Thermal Affection of Larches in the Tunguska Meteorite Fall Region,” Problems of Meteoritics, Ed. by N. V. Vasil’ev (TGU, Tomsk, 1976), pp. 58–63 [in Russian].

    Google Scholar 

  28. A. V. Voznesenskii, “Meteorite Fall of June 30, 1908, in the Khatanga River Upper Reaches,” Mirovedenie 14(1), 25–38 (1925).

    Google Scholar 

  29. F. J. W. Whipple, “The Great Siberian Meteor and the Waves, Seismic and Aerial, Which It Produced,” Quart. J. R. Meteorol. Soc. 56(236), 287–301 (1930).

    Google Scholar 

  30. C. T. R. Wilson, “A Theory of Thundercloud Electricity,” Proc. R. Soc. Ser. A 236, 297–317 (1956).

    Article  Google Scholar 

  31. G. M. Zenkin and A. G. Il’in, “On a Radiation Burn of Trees in the Tunguska Meteorite Explosion Region,” Meteoritika, No. 24, 129–140 (1964).

  32. G. M. Zenkin, A. G. Il’in, A. I. Egorshin, A. P. Boyarkina, S. E. Ven’yaminov, and L. F. Shikalov, “Characterization of Trees that Survived in the Epicenter of the Tunguska Disaster,” in The Problem of the Tunguska Meteorite, Ed. by G. F. Plekhanov (TGU, Tomsk, 1963), pp. 84–63 [in Russian].

    Google Scholar 

  33. A. V. Zolotov, “Estimation of the Tunguska Cosmic Body Parameters Using New Data,” Dokl. Akad. Nauk SSSR 172(5), 1049–1052 (1967).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. G. Gladysheva.

Additional information

Original Russian Text © O.G. Gladysheva, 2009, published in Geomagnetizm i Aeronomiya, 2009, Vol. 49, No. 3, pp. 416–423.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gladysheva, O.G. Atmospheric discharge as a source of emission during the Tunguska disaster. Geomagn. Aeron. 49, 397–404 (2009). https://doi.org/10.1134/S0016793209030141

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016793209030141

PACS numbers

Navigation