Geomagnetism and Aeronomy

, 48:518 | Cite as

Solar proton events and evolution of cyclones in the North Atlantic

  • S. V. Veretenenko
  • P. Tejll


The influence of solar proton events (SPEs) with particle energies > 90 MeV on the evolution of extratropical cyclones in the North Atlantic is studied. A substantial intensification of the regeneration (secondary deepening) of cyclones near the southeastern Greenland coast after the SPE onset is detected. It is shown that the observed deepening of cyclones is caused by intensified advection of cold when the zone of the Arctic front in the region of the Greenland coast is approached. The results allow us to assume that SPEs with the above particle energies cause substantial changes in the structure of the thermobaric field of the subpolar and high-latitude troposphere, which form more favorable conditions for the regeneration of cyclones. In this case the role of the Arctic vertical frontal zone is apparently important. Temperature field changes can be caused by the radiation effects of variations in the upper cloudiness.

PACS numbers

96.60.Vg 92.60.Qx 93.30.Mj 


  1. 1.
    Catalog of Solar Proton Events 1987–1996, Ed. by Yu. I. Logachev (Moscow Univ. Press, Moscow, 1998).Google Scholar
  2. 2.
    Catalog of Solar Proton Events 1980–1986, Ed. by Yu. I. Logachev (Mezhved. Geofiz. Komit. Akad. Nauk SSSR-MTsD B, Moscow, 1990) [in Russian].Google Scholar
  3. 3.
    L. I. Dorman, The Experimental and Theoretical Principles of the Astrophysics of Cosmic Rays (Nauka, Moscow, 1975) [in Russian].Google Scholar
  4. 4.
    I. A. Gorchakova, “Calculations of Thermal Radiation Fluxes during Cirri,” in Radiation Properties of Cirri, Ed. by E. M. Feigel’son (Nauka, Moscow, 1989), pp. 209–214 [in Russian].Google Scholar
  5. 5.
    I. A. Gorchakova, “Effect of Cirri on Thermal Radiation Fluxes,” Izv. Akad. Nauk SSSR, Fiz. Atmos. Okeana 27(9), 983–987 (1991).Google Scholar
  6. 6.
    R. G. Harrison and D. B. Stephenson, “Empirical Evidence for a Nonlinear Effect of Galactic Cosmic Rays on Clouds,” Proc. R. Soc. London, Ser. A 462, 1221–1233 (2006).CrossRefGoogle Scholar
  7. 7.
    E. Kalnay, M. Kanamitsu, R. Kistler, et al., “The NCEP/NCAR 40-Year Reanalysis Project,” Bull. Am. Meteorol. Soc. 77, 437–472 (1996).CrossRefGoogle Scholar
  8. 8.
    S. P. Khromov and M. A. Petrosyants, Meteorology and Climatology (Mosk. Gos. Univ., Moscow, 1994) [in Russian].Google Scholar
  9. 9.
    N. J. Macdonald and W. O. Roberts, “Further Evidence of a Solar Corpuscular Influence on a Large-Scale Circulation at 300 mbar,” J. Geophys. Res. 65, 529–534 (1960).CrossRefGoogle Scholar
  10. 10.
    R. Markson and M. Muir, “Solar Wind Control of the Earth’s Electric Field,” Science 208, 979–990 (1980).CrossRefGoogle Scholar
  11. 11.
    L. T. Matveev, Theory of General Circulation of the Earth’s Atmosphere and Climate (Gidrometeoizdat, Leningrad, 1991) [in Russian].Google Scholar
  12. 12.
    E. R. Mustel’, “Solar Corpuscular Fluxes and Their Effect on the Earth’s Atmosphere,” Nauch. Inform. Astron. Sov. Akad. Nauk SSSR, No. 10, 98–175 (1968).Google Scholar
  13. 13.
    E. P. Ney, “Cosmic Radiation and the Weather,” Nature 183, 451–452 (1959).CrossRefGoogle Scholar
  14. 14.
    G. A. Panofski and G. V. Brier, Some Applications of Statistics to Meteorology (Pennsylvania State Univ., Pittsburg, 1968; Gidrometeoizdat, Leningrad, 1972).Google Scholar
  15. 15.
    M. I. Pudovkin and S. V. Veretenenko, “Cloudiness Decreases Associated with Forbush-Decreases of Galactic Cosmic Rays,” J. Atmos. Terr. Phys. 57, 1349–1355 (1995).CrossRefGoogle Scholar
  16. 16.
    M. I. Pudovkin and S. V. Veretenenko, “Variations of the Cosmic Rays as One of the Possible Links between the Solar Activity and the Lower Atmosphere,” Adv. Space Res. 17(11), 161–164 (1996).CrossRefGoogle Scholar
  17. 17.
    M. I. Pudovkin and S. V. Veretenenko, “Variations in the Atmospheric Pressure Meridional Profile during Geomagnetic Disturbance,” Geomagn. Aeron. 32(1), 118–122 (1992).Google Scholar
  18. 18.
    W. O. Roberts and R. H. Olson, “Geomagnetic Storms and Wintertime 300-mb Through Development in the North Pacific-North America Area,” J. Atmos. Sci. 30, 135–140 (1973).CrossRefGoogle Scholar
  19. 19.
    C. J. E. Schuurmans and A. H. Oort, “A Statistical Study of Pressure Changes in the Troposphere and Lower Stratosphere after Strong Solar Flares,” Pure Appl. Geophys. 75, 233–246 (1969).CrossRefGoogle Scholar
  20. 20.
    M. A. Shea and D. F. Smart, “A World Grid of Calculated Cosmic Ray Vertical Cutoff Rigidities for 1980.0,” in Proceedings of the 18th International Cosmic Ray Conference, 1983, Vol. 3, pp. 415–418.Google Scholar
  21. 21.
    Space Data (Nauka, Moscow, 1987) [in Russian].Google Scholar
  22. 22.
    H. Svensmark, “Influence of Cosmic Rays on Earth’s Climate,” Phys. Rev. Lett. 81(22), 5027–5029 (1998).CrossRefGoogle Scholar
  23. 23.
    P. Thejll, Calculation of Relative Vorticity, and the Vorticity Area Index from NCEP Reanalysis Data, (Danish Meteorol. Inst. Tech. Rep., 02-26, Copenhagen, 2002).Google Scholar
  24. 24.
    B. A. Tinsley and G. W. Deen, “Apparent Tropospheric Response to MeV-GeV Particle Flux Variations: A Connection via Electrofreezing of Supercooled Water in High-Level Clouds?,” J. Geophys. Res. 96, 22 283–22 296 (1991).CrossRefGoogle Scholar
  25. 25.
    B. A. Tinsley and F. Yu, “Atmospheric Ionization and Clouds as Links between Solar Activity and Climate,” in Solar Variability and Its Effects on the Earth’s Atmosphere and Climate System, Ed. by J. Pap et al. (AGU Press, Washington, 2004), pp. 321–339.Google Scholar
  26. 26.
    B. A. Tinsley, “Influence of Solar Wind on the Global Electric Current, and Inferred Effects on Cloud Microphysics, Temperature and Dynamics in the Troposphere,” Space Sci. Rev. 94, 231–258 (2000).CrossRefGoogle Scholar
  27. 27.
    B. A. Tinsley, “The Solar Cycle and the QBO Influences on the Latitude of Storm Tracks in the North Atlantic,” Geophys. Res. Lett. 15(5), 409–412 (1988).CrossRefGoogle Scholar
  28. 28.
    B. A. Tinsley, G. M. Brown, and P. H. Scherrer, “Solar Variability Influences on Weather and Climate: Possible Connection through Cosmic Ray Fluxes and Storm Intensification,” J. Geophys. Res. 94, 14783–14792 (1989).Google Scholar
  29. 29.
    M. Todd and D. Kniveton, “Changes of Cloud Cover Associated with Forbush-Decreases of Galactic Cosmic Rays,” J. Geophys. Res. 106, 32031–32041 (2001).Google Scholar
  30. 30.
    S. V. Veretenenko and M. I. Pudovkin, “Variations of Total Cloudiness during Solar Cosmic Ray Events,” Geomagn. Aeron. 36(1), 153–156 (1996) [Geomagn. Aeron. 36 (1), 108–111 (1996)].Google Scholar
  31. 31.
    S. Veretenenko and P. Thejll, “Effects of Energetic Solar Proton Events on the Cyclone Development in the North Atlantic,” J. Atmos. Sol.-Terr. Phys. 66, 393–405 (2004).CrossRefGoogle Scholar
  32. 32.
    V. I. Vorob’ev, Synoptic Meteorology (Gidrometeoizdat, Leningrad, 1991) [in Russian].Google Scholar
  33. 33.
    J. M. Wilcox, P. H. Scherrer, L. Svalgaard, et al., “Influence of Solar Magnetic Sector Structure on Terrestrial Atmospheric Vorticity,” J. Atmos. Sci. 31(2), 581–588 (1974).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2008

Authors and Affiliations

  • S. V. Veretenenko
    • 1
  • P. Tejll
    • 2
  1. 1.Ioffe Physico-Technical InstituteRussian Academy of SciencesSt. PetersburgRussia
  2. 2.Danish Meteorological InstituteCopenhagenDenmark

Personalised recommendations