Skip to main content
Log in

Influence of the plasma zonal E × B drift on the electron concentration in the low-latitude ionospheric F region at the minimum of solar activity near the spring equinox

  • Published:
Geomagnetism and Aeronomy Aims and scope Submit manuscript

Abstract

The three-dimensional nonstationary theoretical model of the concentrations and temperatures of electrons and ions in the ionospheric F region and plasmasphere at low and middle latitudes is used to study variations in the concentration NmF2 and height hmF2 of the ionospheric F2 layer under the action of the plasma zonal drift in the direction geomagnetic west-geomagnetic east perpendicularly to the electric E and geomagnetic B fields. The calculated and measured values of NmF2 and hmF2 for 16 ionospheric sounding stations during the quiet geomagnetic period on March 28–29, 1964 at low solar activity are compared. This comparison made it possible to correct the input parameters of the model: [O] from the NRLMSISE-00 model and the meridional component of the neutral wind velocity from the HWW90 model. It is shown that the nighttime NmF2 values decrease up to twice at low solar activity in the low-latitude ionosphere, and the hmF2 values change by up to 16 km, if the plasma zonal E×B drift is not taken into account. Under the daytime conditions, the influence of the plasma zonal E×B drift on NmF2 can be neglected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. N. Anderson, “A Theoretical Study of the Ionospheric F Region Equatorial Anomaly. I. Theory,” Planet. Space Sci. 21(3), 409–419 (1973a).

    Article  Google Scholar 

  2. D. N. Anderson, “A Theoretical Study of the Ionospheric F Region Equatorial Anomaly. II. Results in the American and Asian Sectors,” Planet. Space Sci. 21(3), 421–442 (1973).

    Article  Google Scholar 

  3. D. N. Anderson, “Modeling the Ambient, Low Latitude F Region Ionosphere: A Review,” J. Atmos. Terr. Phys. 43(8), 753–762 (1981).

    Article  Google Scholar 

  4. G. J. Bailey and N. Balan, Handbook of Ionospheric Models, Ed. by R. W. Schunk (Utah State Univ, Logan, 1996), pp. 173–206.

    Google Scholar 

  5. M. G. Deminov and Ya. A. Fishchuk, “On the Use of the Geomagnetic Field Approximation by the Eccentric Dipole in Problems of Ionosphere and Plasmasphere Modeling,” Geomagn. Aeron. 40(3), 119–123 (2000) [Geomagn. Aeron. 40, 383–387 (2000)].

    Google Scholar 

  6. J. R. Dudeney, “The Accuracy of Simple Methods for Determining the Height of the Maximum Electron Concentration of the F 2 Layer from Scaled Ionospheric Characteristics,” J. Atmos. Terr. Phys. 45(2/3), 629–640 (1983).

    Article  Google Scholar 

  7. B. G. Fejer and L. Scherliess, “On the Variability of Equatorial F Region Vertical Plasma Drifts,” J. Atmos. Sol.-Terr. Phys. 63(9), 893–897 (2001).

    Article  Google Scholar 

  8. B. G. Fejer, “F Region Plasma Drifts over Arecibo: Solar Cycle, Seasonal, and Magnetic Activity Affects,” J. Geophys. Res. 98(8), 13 645–13 652 (1993).

    Article  Google Scholar 

  9. B. G. Fejer, J. R. Souza, A. S. Santos, and A. E. Costa Perier, “Climatology of F Region Zonal Plasma Drifts over Jicamarca,” J. Geophys. Res. 110, 12310 (2005).

    Article  Google Scholar 

  10. A. C. Fraser-Smith, “Centered and Eccentric Geomagnetic Dipoles and Their Poles, 1600–1985,” Rev. Geophys. 25(1), 1–16 (1987).

    Article  Google Scholar 

  11. A. E. Hedin, N. W. Spencer, M. A. Biondi, et al., “Revised Global Model of Thermosphere Winds Using Satellite and Ground-Based Observations,” J. Geophys. Res. 96(5), 7657–7681 (1991).

    Article  Google Scholar 

  12. A. I. Kashirin, “Photoionization in the Nighttime Ionosphere,” Geomagn. Aeron. 26(4), 563–568 (1986).

    Google Scholar 

  13. G. H. Millward, R. J. Moffett, S. Quegan, and T. J. Fuller-Rowell, “A Coupled Thermosphere-Ionosphere-Plasmasphere Model (CTIP),” in Handbook of Ionospheric Models, Ed. by R. W. Schunk (Utah State Univ., Logan, 1996), pp. 239–279.

    Google Scholar 

  14. A. A. Namgaladze, Yu. N. Koren’kov, V. V. Klimenko, et al., “Global Model of the Thermosphere-Ionosphere-Protonosphere System,” Pure Appl. Geophys. 127(2/3), 219–254 (1988).

    Article  Google Scholar 

  15. A. A. Namgaladze, Yu. N. Koren’kov, V. V. Klimenko, et al., “Global Numerical Model of the Earth’s Thermosphere, Ionosphere, and Protonosphere,” Geomagn. Aeron. 30(4), 612–619 (1990).

    Google Scholar 

  16. A. V. Pavlov and N. M. Pavlova, “Effect of Zonal E×B Plasma Drift on Electron Density in the Low-Latitude Ionospheric F Region at a Solar Activity Maximum near Autumnal Equinox,” Geomagn. Aeron. 47(5), 659–673 (2007) [Geomagn. Aeron. 47, 621–635 (2007)].

    Article  Google Scholar 

  17. A. V. Pavlov, “New Method in Computer Simulations of Electron and Ion Densities and Temperatures in the Plasmasphere and Low-Latitude Ionosphere,” Ann. Geophys. 21(7), 1601–1628 (2003).

    Google Scholar 

  18. A. V. Pavlov, “The Role of the Zonal E×B Plasma Drift in the Low Latitude Ionosphere at High Solar Activity near Equinox from a New Three-Dimensional Theoretical Model,” Ann. Geophys. 24(10), 2553–2572 (2006).

    Article  Google Scholar 

  19. A. V. Pavlov, S. Fukao, and S. Kawamura, “Comparison of the Measured and Modeled Electron Densities and Electron and Ion Temperatures in the Low Latitude Ionosphere during 19–21 March 1988,” Ann. Geophys. 22(8), 2747–2763 (2004a).

    Google Scholar 

  20. A. V. Pavlov, S. Fukao, and S. Kawamura, “F Region Ionospheric Perturbations in the Low-Latitude Ionosphere during the Geomagnetic Storm of 25–27 August 1987,” Ann. Geophys. 22(10), 3479–3501 (2004b).

    Google Scholar 

  21. J. M. Picone, A. E. Hedin, D. P. Drob, and A. C. Aikin, “NRLMSISE-00 Empirical Model of the Atmosphere: Statistical Comparisons and Scientific Issues,” J. Geophys. Res. 107(12), 1468 (2002).

    Article  Google Scholar 

  22. P. G. Richards, J. A. Fennelly, and D. G. Torr, “EUVAC: A Solar EUV Flux Model for Aeronomical Calculations,” J. Geophys. Res. 99(5), 8981–8986 (1994).

    Article  Google Scholar 

  23. H. Rishbeth, “The Equatorial F Layer: Progress and Puzzles,” Ann. Geophys. 18(7), 730–739 (2000).

    Article  Google Scholar 

  24. L. Scherliess and B. G. Fejer, “Radar and Satellite Global Equatorial F Region Vertical Drift Model,” J. Geophys. Res. 104(4), 6829–6842 (1999).

    Article  Google Scholar 

  25. T. Shimazaki, “World-Wide Variations in the Height of the Maximum Electron Density of the Ionospheric F 2 Layer,” J. Radio Res. Lab. 2(7), 85–97 (1955).

    Google Scholar 

  26. J. E. Titheridge, “Model Results for the Ionospheric E Region: Solar and Seasonal Changes,” Ann. Geophys. 15(1), 63–78 (1997).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © A.V. Pavlov, N.M. Pavlova, A.D. Shevnin, 2008, published in Geomagnetizm i Aeronomiya, 2008, Vol. 48, No. 4, pp. 499–510.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pavlov, A.V., Pavlova, N.M. & Shevnin, A.D. Influence of the plasma zonal E × B drift on the electron concentration in the low-latitude ionospheric F region at the minimum of solar activity near the spring equinox. Geomagn. Aeron. 48, 479–490 (2008). https://doi.org/10.1134/S0016793208040087

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016793208040087

PACS numbers

Navigation