Skip to main content
Log in

Studying the dynamics of the lunar daily geomagnetic variations

  • Published:
Geomagnetism and Aeronomy Aims and scope Submit manuscript

Abstract

Results of studying the lunar daily geomagnetic variations in the spectral and time regions at the network of observatories are presented. The seasonal variations in the amplitudes of the fundamental harmonic constituents of three lunar variation components have been revealed. The seasonal time variations have been analyzed using the digital bandpass filtering and harmonic synthesis based on the data of the Kakioka and Memambetsu geomagnetic observatories. The 11-year solar cycle and annual and semiannual periods have been distinguished in the seasonal variation spectrum. Studying the spectral singularities of the lunar daily variation at these observatories and the sea level variations in daytime and nighttime hours has made it possible to identify the contribution of the oceanic dynamo to the lunar variation vertical component.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.-I. Akasofu and S. Chapman, Solar-Terrestrial Physics (Pergamon, Oxford, 1972; Mir, Moscow, 1975).

    Google Scholar 

  2. S. I. Baskakov, Radiotechnical Circuits and Signals (Vysshaya Shkola, Moscow, 1988) [in Russian].

    Google Scholar 

  3. J. Bendat and G. Piersol, Random Data: Analysis and Measurement Procedures (New York etc., 1986; Mir, Moscow 1989).

  4. M. Cueto, D. McKnight, and M. Herraiz, “Daily Geomagnetic Variations on the Iberian Peninsula,” Geophys. J. Int. 152, 113–123 (2003).

    Article  Google Scholar 

  5. S. A. Cummer, “Modeling Electromagnetic Propagation in the Earth-Ionosphere Waveguide,” IEEE. Trans. Antennas Propag. 48(9), 1420–1429 (2000).

    Article  Google Scholar 

  6. J. L. Davis, P. Elosegui, J. X. Mitrovica, and M. E. Tamisiea, “Climate-Driven Deformation of the Solid Earth from GRACE and GPS,” Geophys. Res. Lett. 31, L24605 (2004).

    Google Scholar 

  7. F. De Meyer, “A Modulation Model for the Solar and Lunar Daily Geomagnetic Variations,” Earth Planet. Space 55, 405–418 (2003).

    Google Scholar 

  8. I. S. Gonorovskii, Radiotechnical Circuits and Signals (Sov. Radio, Moscow, 1977) [in Russian].

    Google Scholar 

  9. R. Leitinger, N. Jakowski, G. K. Hartmann, and E. Feichter, http:www.mps.mpg.de/dokumente/projekte/mas/dust-2/tec.pdf.2000.

  10. S. R. C. Malin, “Separation of Lunar Daily Geomagnetic Variation into Parts of Ionospheric and Oceanic Origin,” Geophys. J. R. Astron. Soc. 21, 447–455 (1970).

    Google Scholar 

  11. S. R. C. Malin, M. K. Tuncer, and O. Yazici-Cakin, “Systematic Analysis of Geomagnetic Observatory Data-I. A Proposed Method,” Geophys. J. Int. 126, 635–644 (1996).

    Article  Google Scholar 

  12. S. L. Marple, Jr., Digital Spectral Analysis (Englewood Cliffs, New York, 1987; Mir, Moscow, 1990).

    Google Scholar 

  13. S. Maus, R. Tyler, and H. Luhr, http://gfz-pots-dam.de/pb2/pb23/SatMag/Doc/Poster1_A4.pdf, 2003

  14. J. D. McKnight, “Lunar Daily Geomagnetic Variations in New Zealand,” Geophys. J. Int. 122, 889–898 (1995).

    Article  Google Scholar 

  15. P. Melchior, The Earth Tides (Pergamon press, Oxford, 1966; Mir, Moscow, 1968).

    Google Scholar 

  16. N. Olsen, F. Lowes, and T. J. Sabaka, “Ionospheric and Induced Field Leakage in Geomagnetic Field Models, and Derivation of Candidate Models for DGRF 1995 and DGRF 2000,” Earth Planet. Space 57, 1191–1196 (2005).

    Google Scholar 

  17. W. D. Parkinson, Introduction to Geomagnetism (Scottish Acad. Press, Edinburg, 1983; Mir, Moscow, 1986).

    Google Scholar 

  18. L. R. Rabiner and B. Gold, Theory and Application of Digital Signal Processing (Prentice-Hall, Englewood Cliffs, N.J., 1975; Mir, Moscow, 1978).

    Google Scholar 

  19. W. G. V. Rosser and D. M. Schlapp, “Geomagnetic Lunar Variations Due to the Ocean Dynamo Measured at European Observatories,” Geophys. J. Int. 103, 257–260 (1990).

    Article  Google Scholar 

  20. M. Shiraki, “Effect of Oceanic Dynamo on the Lunar Daily Geomagnetic Variation at Kakioka, Memambetsu and Kanoya, Japan, 1958–1973,” Mem. Kakioka Magn. Obs. 17(2), 49–58 (1978b).

    Google Scholar 

  21. M. Shiraki, “S q and L q Variations at Kakioka, Memambetsu and Kanoya, Japan, 1958–1973,” Mem. Kakioka Magn. Obs. 17(2), 71–76, (1978a).

    Google Scholar 

  22. S. S. Starjinsky, “On a Fine Structure of the Lunar Daily Geomagnetic Variation,” Dokl. Ross. Akad. Nauk 398(1), 109–112 (2004).

    Google Scholar 

  23. R. J. Stening and D. E. Winch, “The Lunar Geomagnetic Tide at Night,” Geophys. J. R. Astron. Soc. 88, 461–476 (1987).

    Google Scholar 

  24. R. H. Tyler, S. Maus, and H. Luhr, “Satellite Observations of Magnetic Fields Due to Ocean Tidal Flow,” Science 299, 239–244 (2003).

    Article  Google Scholar 

  25. J. Wahr, S. Swenson, V. Zlotnicki, and I. Valicogna, “Time-Variable Gravity from GRACE: First Results,” Geophys. Res. Lett. 31(11), L11501 (2004).

  26. B. M. Yanovskii, Terrestrial Magnetism (Leningr. Gos. Univ., Leningrad, 1964).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © S.S. Starjinsky, 2008, published in Geomagnetizm i Aeronomiya, 2008, Vol. 48, No. 2, pp. 275–286.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Starjinsky, S.S. Studying the dynamics of the lunar daily geomagnetic variations. Geomagn. Aeron. 48, 265–276 (2008). https://doi.org/10.1134/S0016793208020175

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016793208020175

PACS numbers

Navigation