Skip to main content
Log in

Empirical model of variations in the emission of the molecular oxygen Atmospheric system. 2. Temperature

  • Published:
Geomagnetism and Aeronomy Aims and scope Submit manuscript

Abstract

The empirical approximations of variations in the rotational temperature of the emission of the molecular oxygen Atmospheric system, obtained based on the systematization of the long-term ground-based observations under different heliogeophysical conditions, are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. M. Aushev, A. I. Pogoreltsev, V. V. Vodyannikov, et al., “Results of the Airglow and Temperature Observations by MORTI at the Almaty Site (43.05N, 76.97E),” Phys. Chem. Earth (B) 25(5–6), 409–415 (2000).

    Google Scholar 

  2. M. A. Berg and N. N. Shefov, “Emission of the Hydroxyl Bands and the (0,1) λ8645 Å Atmospheric Band of Oxygen in the Nightglow,” Planet. Space Sci. 9(4), 167–171 (1962b).

    Article  Google Scholar 

  3. M. A. Berg and N. N. Shefov, “Emission of OH and the λ8645 Å atmospheric Band of O2 Molecule,” Polyarn. Siyaniya Svechenie Nochnogo Neba, No. 9, 46–52 (1962a).

  4. G. Brasseur and S. Solomon, Aeronomy of the Middle Atmosphere (Reidel, Dordrecht, 1984; Gidrometeoizdat, Leningrad, 1987).

    Google Scholar 

  5. V. I. Krassovsky, B. P. Potapov, A. I. Semenov, et al., “Internal Gravity Waves near the Magnetopause. I. Results of Studying the Hydroxyl Emission,” Polyarn. Siyaniya Svechenie Nochnogo Neba, No. 26, 5–29 (1978).

  6. V. I. Krassovsky, B. P. Potapov, A. I. Semenov, et al., “The Internal Gravity Waves near Mesopause and Hydroxyl Emission,” Ann. Geophys. 33(3), 347–356 (1977).

    Google Scholar 

  7. M. McEwan and L. Phillips, Chemistry of the Atmosphere (Arnold, London, 1975; Mir, Moscow, 1978).

    Google Scholar 

  8. J. Meeus, Astronomical Formulae for Calculators (Willman-Bell, Richmond, 1985; Mir, Moscow, 1988).

    Google Scholar 

  9. V. I. Perminov, A. I. Semenov, V. V. Bakanas, et al., “Regular Variations in the (0–1) Band Intensity of the Oxygen Emission Atmospheric System,” Geomagn. Aeron. 44(4), 541–544 (2004) [Geomagn. Aeron. 44, 498–501 (2004)].

    Google Scholar 

  10. V. I. Perminov, N. N. Shefov, and A. I. Semenov, “Empirical Model of Variations in the Emission of the Molecular Oxygen Atmospheric System. 1. Intensity,” Geomagn. Aeron. 46(1), 111–115 (2007) [Geomagn. Aeron. 47, 104–108 (2007)].

    Google Scholar 

  11. V. I. Perminov, N. N. Shefov, and A. I. Semenov, “Regular Variations of Characteristics of the Molecular Oxygen Airglow Atmospheric System,” Geophys. Res. Abstr. 8, 03736 (2006).

    Google Scholar 

  12. E. R. Reisin and J. Scheer, “Characteristics of Atmospheric Waves in the Tidal Period Range Derived from Zenith Observations of O2 (0–1) Atmospheric and OH (6-2) Airglow at Lower Midlatitudes,” J. Geophys. Res. 101, 21 223–21 232 (1996).

    Article  Google Scholar 

  13. J. Scheer and E. R. Reisin, “Rotational Temperatures for OH and O2 Airglow Bands Measured Simultaneously from El Leoncito (31°48′),” J. Atmos. Terr. Phys. 52(1), 47–56 (1990).

    Article  Google Scholar 

  14. J. Scheer, E. R. Reisin, and C. H. Mandrini, “Solar Activity Signatures in Mesopause Region Temperatures and Atomic Oxygen Related Airglow Brightness at El Leoncito, Argentina,” J. Atmos. Sol. Terr.-Phys. 67(2), 145–154 (2005).

    Article  Google Scholar 

  15. A. I. Semenov, N. N. Shefov, E. V. Lysenko, et al., “The Seasonal Peculiarities of Behavior of the Long-Term Temperature Trends in the Middle Atmosphere at the Mid-Latitudes,” Phys. Chem. Earth 27(6–8), 529–534 (2002).

    Google Scholar 

  16. A. I. Semenov, V. V. Bakanas, V. I. Perminov, et al., “The Near Infrared Spectrum of the Emission of the Nighttime Upper Atmosphere of the Earth,” Geomagn. Aeron. 42(3), 407–414 (2002) [Geomagn. Aeron. 42, 390–397 (2002)].

    Google Scholar 

  17. N. N. Shefov, “Altitude of the Emitting Layer of the Molecular Oxygen Atmospheric System,” Polyarn. Siyaniya Svechenie Nochnogo Neba, No. 23, 54–58 (1975).

  18. H. Takahashi, D. Gobbi, P. P. Batista, et al., “Dynamical Influence on the Equatorial Airglow Observed from the South American Sector,” Adv. Space Res. 21(6), 817–825 (1998).

    Article  Google Scholar 

  19. H. Takahashi, Y. Sahai, and P. P. Batista, “Airglow O2(1Σ) Atmospheric Band at 8645 Å and the Rotational Temperature Observed at 23°S,” Planet. Space Sci. 34(3), 301–306 (1986).

    Article  Google Scholar 

  20. T. I. Toroshelidze, “Measurements of the O2 and OH Atmospheric Bands in Nightglow,” Astrophys. Space Sci. 215, 11–15 (1994).

    Article  Google Scholar 

  21. J. H. Yee, G. Crowley, R. G. Roble, et al., “Global Simulations and Observations of O(1S), O2(1Σ) and OH Mesospheric Nightglow Emissions,” J. Geophys. Res. 102A, 19 949–19 968 (1997).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © V.I. Perminov, 2008, published in Geomagnetizm i Aeronomiya, 2008, Vol. 48, No. 2, pp. 270–274.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Perminov, V.I. Empirical model of variations in the emission of the molecular oxygen Atmospheric system. 2. Temperature. Geomagn. Aeron. 48, 260–264 (2008). https://doi.org/10.1134/S0016793208020163

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016793208020163

PACS numbers

Navigation