Skip to main content
Log in

Global electron content during solar cycle 23

  • Published:
Geomagnetism and Aeronomy Aims and scope Submit manuscript

Abstract

Global electron content (GEC) as a new ionospheric parameter was first proposed by Afraimovich et al. [2006]. GEC is equal to the total number of electrons in the near-Earth space. GEC better than local parameters reflects the global response to a change in solar activity. It has been indicated that, during solar cycle 23, the GEC dynamics followed similar variations in the solar UV irradiance and F 10.7 index, including the 11-year cycle and 27-day variations. The dynamics of the regional electron content (REC) has been considered for three belts: the equatorial belt and two midlatitude belts in the Northern and Southern hemispheres (±30° and 30°–65° geomagnetic latitudes, respectively). In contrast to GEC, the annual REC component is clearly defined for the northern and southern midlatitude belts; the REC amplitude is comparable with the amplitude of the seasonal variations in the Northern Hemisphere and exceeds this amplitude in the Southern Hemisphere by a factor of ∼1.7. The dayside to nightside REC ratio, R(t), at the equator is a factor of 1.5 as low as such a GEC ratio, which indicates that the degree of nighttime ionization is higher, especially during the solar activity maximum. The pronounced annual cycle with the maximal R(t) value near 8.0 for the winter Southern Hemisphere and summer Northern Hemisphere is typical of midlatitudes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. L. Afraimovich, E. I. Astafyeva, and I. V. Zhivetiev, “Solar Activity and Global Electron Content,” Dokl. Akad. Nauk 409(3), 399–402 (2006a) [Dokl. Akad. Nauk 409A (6), 921–924 (2006a)].

    Google Scholar 

  2. E. L. Afraimovich, E. I. Astafyeva, A. V. Oinats, et al., “Global Electron Content as a New Index of Solar Activity. Comparison with IRI Modeling Results,” IRI News 13(1A5) (2006b).

  3. S.-I. Akasofu and S. Chapman, Solar-Terrestrial Physics (Pergamon, Oxford, 1972; Mir, Moscow, 1975).

    Google Scholar 

  4. W. J. G. Beynon and G. M. Brown, “Region E and Solar Activity,” J. Atmos. Phys. 15, 168–174 (1959).

    Article  Google Scholar 

  5. D. Bilitza, “International Reference Ionosphere,” Radio Sci. 36(2), 261–275 (2001).

    Article  Google Scholar 

  6. B. E. Bryunelli and A. A. Namgaladze, Physics of the Ionosphere (Nauka, Moscow, 1988) [in Russian].

    Google Scholar 

  7. Handbook of Radio Electronics Theory, Ed. by B. Kh. Krivitskii (Energiya, Moscow, 1977), Vol. 2 [in Russian].

    Google Scholar 

  8. B. Hofmann-Wellenhof, H. Lichtenegger, and J. Collins, Global Positioning System: Theory and Practice (Springer, New York, 1992).

    Google Scholar 

  9. G. S. Ivanov-Kholodny and G. M. Nikol’skii, The Sun and the Ionosphere (Nauka, Moscow, 1969) [in Russian].

    Google Scholar 

  10. N. Jakowski, S. Heise, A. Wehrenpfennig, et al., “GPS/GLONASS-Based TEC Measurements as a Contributor for Space Weather,” J. Atmos. Sol.-Terr. Phys. 64(5–6), 729–735 (2002).

    Article  Google Scholar 

  11. N. Jakowski, B. Fichtelmann, and A. Jungstand, “Solar Activity Control of Ionosphere and Thermosphere Processes,” J. Atmos. Terr. Phys. 53, 1125–1130 (1991).

    Article  Google Scholar 

  12. D. L. Judge, D. R. McMullin, H. S. Ogawa, et al., “First Solar EUV Irradiances Obtained from SOHO by the Celias/Sem,” Sol. Phys. 177, 161–173 (1998).

    Article  Google Scholar 

  13. I. A. Krinberg and A. V. Tashchilin, The Ionosphere and Plasmasphere (Nauka, Moscow, 1984) [in Russian].

    Google Scholar 

  14. R. Leitinger, M. Zhang, and S. M. Radicella, “An Improved Bottom Side for the Ionosphere Electron Density Model NeQuick,” Ann. Geophys. 48(3), 525–534 (2005).

    Google Scholar 

  15. L. Liu, W. Wan, B. Ning, et al., “Solar Activity Variations of the Ionosphere Peak Electron Density,” J. Geophys. Res., 111, A08304 (2006).

    Google Scholar 

  16. A. J. Mannucci, B. D. Wilson, D. N. Yuan, et al., “A Global Mapping Technique for GPS-Derived Ionosphere TEC Measurements,” Radio Sci. 33(3), 565–582 (1998).

    Article  Google Scholar 

  17. A. V. Mordvinov and L. A. Plyusnina, “Coherent Structures in the Dynamics of the Large-Scale Solar Magnetic Field,” Astron. Zh. 78(8), 753–760 (2001) [Astron. Rep. 45 (8), 652–658 (2001)].

    Google Scholar 

  18. A. V. Mordvinov and R. C. Willson, “Effect of Large-Scale Magnetic Fields on Total Solar Irradiance,” Sol. Phys. 215, 5–16 (2003).

    Article  Google Scholar 

  19. A. A. Nusinov and V. V. Katyushina, “Lyman-Alpha Line Intensity as a Solar Activity Index in the Far Ultraviolet Range,” Sol. Phys. 152, 201–206 (1994).

    Article  Google Scholar 

  20. A. A. Nusinov, “The Ionosphere as a Natural Detector for Studying Long-Period Variations in the Fluxes of Solar Geoeffective Radiation,” Geomagn. Aeron. 44(6), 779–786 (2004) [Geomagn. Aeron. 44, 718–725 (2004)].

    Google Scholar 

  21. K.-I. Oyama, K. Noguchi, M. Izawa, et al., “Local Time, Annual, Latitude, and Seasonal Variations of Total Electron Content over Japan,” ISAS Res. Note 796 (2005).

  22. S. Schaer, G. Beutler, and M. Rothacher, “Mapping and Predicting the Ionosphere,” in Proceedings of the IGS AC Workshop, Darmstadt, 1998, pp. 307–320.

  23. C. Torrence and G. P. Compo, “A Practical Guide to Wavelet Analysis,” Bull. Am. Meteorol. Soc. 79, 61–78 (1998).

    Article  Google Scholar 

  24. I. S. Veselovsky, et al., “Solar and Heliospheric Phenomena in October–November 2003: Causes and Consequences,” Kosm. Issled. 42(5), 453–508 (2004).

    Google Scholar 

  25. Yu. I. Vitinsky, M. Kopetsky, and G. V. Kuklin, Statistics of Sunspot Formation Activity (Nauka, Moscow, 1986) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © E.L. Afraimovich, E.I. Astafyeva, I.V. Zhivetiev, A.V. Oinats, Yu.V. Yasyukevich, 2008, published in Geomagnetizm i Aeronomiya, 2008, Vol. 48, No. 2, pp. 195–208.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Afraimovich, E.L., Astafyeva, E.I., Zhivetiev, I.V. et al. Global electron content during solar cycle 23. Geomagn. Aeron. 48, 187–200 (2008). https://doi.org/10.1134/S0016793208020084

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016793208020084

PACS numbers

Navigation