Skip to main content
Log in

On rotational temperature of the hydroxyl emission

  • Published:
Geomagnetism and Aeronomy Aims and scope Submit manuscript

Abstract

The method for determining the rotational temperature of the hydroxyl emission of the upper atmosphere is analyzed. It is shown that a discrepancy of up to 14 K appears in the temperature values determined for the region of OH emission (∼87 km) since different researchers use the intensity factors (line strengths) of the lines of the rotational structure of hydroxyl bands based on various theoretical calculations. This discrepancy considerably exceeds the error (2–3 K) of direct temperature measurements. The use of the set of such data in the analysis of the time and spatial temperature regime can lead to a distortion of the character of the long-term changes in the mesopause temperature. Analytical expressions are obtained making it possible to calculate a systematic correction for the temperatures determined with the use of various intensity factors. One should also take into account considerable seasonal variations in the dependence of rotational temperature values on the level of the hydroxyl vibrational excitation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. V. Bakanas and V. I. Perminov, “Some Features in the Seasonal Behavior of the Hydroxyl Emission Characteristics,” Geomagn. Aeron. 43(3), 389–396 (2003) [Geomagn. Aeron. 43, 363–369 (2003)].

    Google Scholar 

  2. W. S. Benedict, E. K. Plyler, and C. J. Humphreys, “The Emission Spectrum of OH from 1.4 to 1.7 μm,” J. Chem. Phys. 21(3), 398–402 (1953).

    Article  Google Scholar 

  3. M. A. Berg and N. N. Shefov, “Hydroxyl Emission with Different Oscillatory Excitation,” Polyarn. Siyaniya Svechenie Nochnogo Neba, No. 10, 19–23 (1963).

  4. K. A. Dick, “On the Rotational Temperature of the Airglow Hydroxyl Emissions,” Planet. Space Sci. 25(6), 595–596 (1977).

    Article  Google Scholar 

  5. W. J. R. French, G. B. Burns, K. Finlayson, et al., “Hydroxyl (6-2) Airglow Emission Intensity Ratios for Rotational Temperature Determination,” Ann. Geophys. 18(10), 1293–1303 (2000).

    Google Scholar 

  6. A. Goldman, W. G. Schoenfeld, D. Goorvitch, et al., “Updated Line Parameters for OH X2-X2(V″, V′) Transitions,” J. Quant. Spectrosc. Radiat. Transfer 59(3–5), 453–469 (1998).

    Article  Google Scholar 

  7. R. Herman and R. F. Wallis, “Influence of Vibration-Rotation Bands of Diatomic Molecules,” J. Chem. Phys. 23(4), 637–646 (1955).

    Article  Google Scholar 

  8. E. Hill and J. H. Van Vleck, “On the Quantum Mechanics of the Rotational Distortion of Multiplets in Molecular Spectra,” Phys. Rev. 32(2), 250–272 (1928).

    Article  Google Scholar 

  9. K. W. Holtzclaw, B. L. Upschulte, G. E. Caledonia, et al., “Rotational Relaxation of High-N States of OH(X2, V = 1–3) by O2,” J. Geophys. Res. 102A, 4521–4528 (1997).

    Article  Google Scholar 

  10. K. W. Holtzclaw, J. C. Person, and B. D. Green, “Einstein Coefficients for Emission from High Rotational States of the OH(X2) Radical,” J. Quant. Spectrosc. Radiat. Transfer 49(3), 223–235 (1993).

    Article  Google Scholar 

  11. Z. V. Karyagina, “Hydroxyl Emission in the Night Sky Spectrum as Observed in Alma-Ata,” Polyarn. Siyaniya Svechenie Nochnogo Neba, No. 8, 6–8 (1962).

  12. I. Kovács, Rotational Structure in the Spectra of Diatomic Molecules (Akadémiai Kiadó, Budapest, 1969).

    Google Scholar 

  13. V. I. Krassovsky, B. P. Potapov, A. I. Semenov, et al., “On the Equilibrium Nature of the Rotational Temperature of Hydroxyl Airglow,” Planet. Space Sci. 25(6), 596–597 (1977).

    Article  Google Scholar 

  14. G. Kvifte, “Temperature Measurements from OH Bands,” Planet. Space Sci. 5(2), 153–157 (1961).

    Article  Google Scholar 

  15. S. R. Langhoff, H. J. Werner, and P. Rosmus, “Theoretical Transition Probabilities for the OH Meinel System,” J. Molecular Spectrosc. 118(4), 507–529 (1986).

    Article  Google Scholar 

  16. J. J. López-Moreno, R. Rodrigo, F. Moreno, et al., “Altitude Distribution of Vibrationally Excited States of Atmospheric Hydroxyl at Levels v = 2 to v = 7,” Planet. Space Sci. 35(8), 1029–1038 (1987).

    Article  Google Scholar 

  17. U. B. Makhlouf, R. H. Picard, and J. R. Winick, “Photochemical-Dynamical Modeling of the Measured Response of Airglow to Gravity Waves. 1. Basic Model for OH Airglow,” J. Geophys. Res. 100D, 11289–11311 (1995).

    Article  Google Scholar 

  18. F. H. Mies, “Calculated Vibrational Transition Probabilities of OH(X2),” J. Molecular Spectrosc. 53(2), 150–188 (1974).

    Article  Google Scholar 

  19. W. R. Pendleton and M. J. Taylor, “The Impact of L-Uncoupling on Einstein Coefficients for the OH Meinel (6.2) Band: Implications for Q-Branch Rotational Temperatures,” J. Atmos. Sol.-Terr. Phys. 64(8–11), 971–983 (2002).

    Article  Google Scholar 

  20. V. I. Perminov and A. I. Semenov, “Nonequilibrium of the Rotational Temperature of the OH Bands with a High Rotational Excitation,” Geomagn. Aeron. 32(2), 175–178 (1992).

    Google Scholar 

  21. N. A. Piterskaya and N. N. Shefov, “Intensity Distribution in the Rotational-Vibrational OH Bands,” Polyarn. Siyaniya Svechenie Nochnogo Neba, No. 23, 69–122 (1975).

  22. V. S. Prokudina, “Determination of the Hydroxyl Rotational Temperature in the Upper Atmosphere,” Izv. Akad. Nauk SSSR, Ser. Geofiz., No. 4, 629–631 (1959).

  23. A. I. Semenov and N. N. Shefov, “Empirical Model of Hydroxyl Emission Variations,” Int. J. Geomagn. Aeron. 1(3), 229–242 (1999).

    Google Scholar 

  24. A. I. Semenov and N. N. Shefov, “An Empirical Model for the Variations in the Hydroxyl Emission,” Geomagn. Aeron. 36(4), 68–85 (1996) [Geomagn. Aeron. 36, 468–480 (1996)].

    Google Scholar 

  25. A. I. Semenov, V. V. Bakanas, V. I. Perminov, et al., “The Near Infrared Spectrum of the Emission of the Nighttime Upper Atmosphere of the Earth,” Geomagn. Aeron. 42(3), 407–414 (2002) [Geomagn. Aeron. 42, 390–397 (2002)].

    Google Scholar 

  26. N. N. Shefov, “On Determining the Rotational Temperature of the OH Bands,” Spektr. Elektrofotom. Radiolokatsionnye Issled. Polyarn. Siyanii Svecheniya, No. 5, 5–9 (1961).

  27. F. Sigernes, N. Shumilov, C. S. Deehr, et al., “Hydroxyl Rotational Temperature Record from the Auroral Station in Adventdalen, Svalbard (78° N, 15° E),” J. Geophys. Res., 108A, 1342 (2003).

    Article  Google Scholar 

  28. G. G. Sivjee and R. M. Hamwey, “Temperature and Chemistry of the Polar Mesopause OH,” J. Geophys. Res. 92A, 4663–4672 (1987).

    Google Scholar 

  29. K. Suzuki and T. Tohmatsu, “An Interpretation of the Rotational Temperature of the Airglow Hydroxyl Emissions,” Planet. Space Sci. 24(7), 665–671 (1976).

    Article  Google Scholar 

  30. H. Takahashi and P. P. Batista, “Simultaneous Measurements of OH(9.4), (8.3), (7.2), (6.2) and (5.1) Bands in the Airglow,” J. Geophys. Res. 86A, 5632–5642 (1981).

    Google Scholar 

  31. R. H. Tipping, R. M. Herman, and S. Short, “High-Accuracy Wavefunctions and Matrix Elements for Vibration-Rotation States of Diatomic Molecules Using the Dunham Potential,” J. Chem. Phys. 53(1), 590–600 (1970).

    Google Scholar 

  32. D. N. Turnbull and R. P. Lowe, “New Hydroxyl Transition Probabilities and Their Importance in Airglow Studies,” Planet. Space Sci. 37(6), 723–738 (1989).

    Article  Google Scholar 

  33. D. N. Turnbull, An Empirical Determination of the Electric Dipole Moment Function and Transition Probabilities of OH(X2) (Univ. Western Ontario, London, 1987).

    Google Scholar 

  34. E. E. Whiting, J. A. Paterson, I. Kovacs, and R. Nicholls, “Computer Checking of Rotational Line Intensity Factors for Diatomic Transitions,” J. Molecular Spectrosc. 47(1), 84–98 (1973).

    Article  Google Scholar 

  35. V. I. Yarin, “On the Dependence of the OH Band Intensity on the Rotational Temperature,” Polyarn. Siyaniya Svechenie Nochnogo Neba, No. 8, 9–10 (1962).

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © V.I. Perminov, A.I. Semenov, N.N. Shefov, 2007, published in Geomagnetizm i Aeronomiya, 2007, Vol. 47, No. 6, pp. 798–805.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Perminov, V.I., Semenov, A.I. & Shefov, N.N. On rotational temperature of the hydroxyl emission. Geomagn. Aeron. 47, 756–763 (2007). https://doi.org/10.1134/S0016793207060084

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016793207060084

PACS numbers

Navigation