Skip to main content
Log in

Wave emission during a plasma density jump in the auroral zone of the topside ionosphere according to the APEX satellite data

  • Published:
Geomagnetism and Aeronomy Aims and scope Submit manuscript

Abstract

The intensity of the wave emission in the 0.1–10 MHz band measured in the ionosphere (the APEX satellite experiment) has been presented. A jump of the plasma density and an increase in the emission intensity at a plasma frequency have been registered at altitudes of ∼1300 km in the topside auroral ionosphere. The emission intensity in the whistler-mode band nonmonotonically increased along the satellite trajectory near the plasma jump wall. It has been indicated that waveguides could be formed near the wall during damping of electrostatic oscillations generated by precipitating electron fluxes. A spatially nonmonotonous separation of waveguides from the plasma inhomogeneity stretched along geomagnetic field lines is possible in this case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. R. Anderson and P. A. Cloutier, “Simultaneous Measurements of Auroral Particles and Electric Currents by a Rocket Borne Instrument System,” J. Geophys. Res. 80(16), 2146–2151 (1975).

    Google Scholar 

  2. L. A. Artsimovich and R. Z. Sagdeev, Plasma Physics for Physicists (Atomizdat, Moscow, 1979) [in Russian].

    Google Scholar 

  3. J. S. Boyd and T. N. Davis, “Rocket Measurements of Electrons in a Multiple Auroral Arc,” J. Geophys. Res. 82(7), 1197–1205 (1977).

    Google Scholar 

  4. N. S. Erokhin and L. A. Mikhailovskaya, “Certain Features of Exactly Solvable Models of Interaction between Waves and an Inhomogeneous Medium,” in Proceedings of the International Conference MSS-04 “Wave Transformation, Coherent Structures, and Turbulence,” Moscow, 2004, Ed. by N. S. Erokhin, E. Ya. Kogan, V. M. Balebanov, et al., pp. 42–47.

  5. D. H. Fairfield, F. Mukai, M. Brittnacher, and G. D. Raves, “Earthward Flow Bursts in the Inner Magnetotail and Their Relation to Auroral Brightness, AKR Intensification, Geosynchronous Particle Injections and Magnetic Activity,” J. Geophys. Res. 104A, 355–364 (1999).

    Article  Google Scholar 

  6. R. Gaezler, L. F. Ziebell, and R. S. Schneider, “Propagation and Amplification of Auroral Kilometric Radiation in Finite Width Auroral Cavities,” J. Geophys. Res. 97A, 19299–19310 (1994).

    Google Scholar 

  7. A. A. Galeev, C. F. Kennel, V. V. Krasnoselskikh, and V. V. Lobzin, “The Role of Whistler Oscillations in the Formation of the Structure of High Mach Collisionless Shock,” ESA SP-285 1, 165–172 (1988).

    Google Scholar 

  8. G. L. Gdalevich, N. I. Izhovkina, and V. D. Ozerov, “Structure of the Plasma Cavity in the Ionospheric F-Layer at the Geomagnetic Equator according to the “Cosmos-900” Satellite Data,” Kosm. Issled. 41(6), 596–602 (2003).

    Google Scholar 

  9. G. Haerendel, “Results from Barium and Cloud Releases in the Ionosphere and Magnetosphere,” Space Res. 13, 601–617 (1973).

    Google Scholar 

  10. B. Hultqvist, “Rocket and Satellite Observations of Energetic Particles Precipitation in Relation to Optical Aurora,” Ann. Geophys. 30(2), 223–258 (1974).

    Google Scholar 

  11. N. I. Izhovkina, A. Kiraga, Z. Klos, and S. A. Pulinets, “Bernstein Modes in the Low-Density Electron Flux with Suprathermal Velocities,” Geomagn. Aeron. 29(4), 604–608 (1989).

    Google Scholar 

  12. N. I. Izhovkina, A. T. Karpachev, I. S. Prutensky, et al., “Heating and Decay of Irregularities in the Electrostatically Unstable Plasma of the Upper Ionosphere,” Geomagn. Aeron. 41(4), 490–494 (2001) [Geomagn. Aeron. 41, 469–473 (2001)].

    Google Scholar 

  13. N. I. Izhovkina, A. T. Karpachev, and S. A. Pulinets, “Structural Features of the Topside Daytime Ionosphere according to the “Intercosmos-19” Satellite Data,” Kosm. Issled. 34(2), 125–129 (1996).

    Google Scholar 

  14. N. I. Izhovkina, I. S. Prutensky, S. A. Pulinets, et al., “Electrostatic Emission and Plasma Inhomogeneities in the Topside Ionosphere at the Geomagnetic Equator,” Geomagn. Aeron. 44(2), 195–203 (2004) [Geomagn. Aeron. 44, 175–182 (2004)].

    Google Scholar 

  15. N. I. Izhovkina, I. S. Prutensky, S. A. Pulinets, et al., “Spectral Singularities of Electrostatic Noise at the Electron Gyrofrequency and Electromagnetic Emission in an Inhomogeneous Plasma of the Topside Ionosphere,” Kosm. Issled. 43(3), 201–208 (2005).

    Google Scholar 

  16. N. I. Izhovkina, I. S. Prutensky, S. A. Pulinets, et al., “Stochastic Spectra of Electrostatic Oscillations in Ionospheric Plasma,” Geomagn. Aeron. 45(2), 208–214 (2005a) [Geomagn. Aeron. 45, 196–202 (2005a)].

    Google Scholar 

  17. N. I. Izhovkina, S. A. Pulinets, and E. P. Trushkina, “Comparison of the Calculated and Measured Whistler Spectra for the “ARAKS” Experiment,” Kosm. Issled. 24(1), 139–143 (1986).

    Google Scholar 

  18. N. I. Izhovkina, S. A. Pulinets, and N. M. Shutte, “Narrowband Electromagnetic VLF Emission from Electron Fluxes in the Ionosphere and Magnetosphere,” Kosm. Issled. 27(2), 228–231 (1989a).

    Google Scholar 

  19. N. I. Izhovkina, V. V. Afonin, A. T. Karpachev, et al., “Structure of the Ionospheric Trough for Different Geomagnetic Disturbance Levels and the Sources of Plasma Heating in the Upper Dayside Ionosphere,” Geomagn. Aeron. 39(4), 39–43 (1999) [Geomagn. Aeron. 39, 438–442 (1999)].

    Google Scholar 

  20. C. F. Kennel and M. Ashour-Abdalla, “Electrostatic Waves and Strong Diffusion of Magnetospheric Electrons,” in Magnetospheric Plasma Physics, Ed. by A. Nishida (Academic, Reidel, 1982), pp. 245–337.

    Google Scholar 

  21. S. S. Moiseev, R. Z. Sagdeev, A. V. Tur, and V. V. Yanovskii, “On Frozen-in Integrals and Lagrange Invariants in a Hydrodynamic Approximation,” Zh. Eksp. Teor. Fiz. 83(1(7)), 215–226 (1982).

    Google Scholar 

  22. S. S. Moiseev, R. Z. Sagdeev, A. V. Tur, and V. V. Yanovskii, “Theory of Large-Scale Structure Origination in Hydrodynamic Turbulence,” Zh. Eksp. Teor. Fiz. 85(6(12)), 1979–1987 (1983).

    Google Scholar 

  23. Z. Nemecek, J. Safrankova, L. Prech, et al., “Artificial Electron and Ion Beam Effects: Active Plasma Experiment,” J. Geophys. Res. 102A, 2201–2211 (1997).

    Article  Google Scholar 

  24. M. V. Nezlin and G. P. Chernikov, “Analogy of Drift Vortices in Plasma and Geophysical Hydrodynamics,” Fiz. Plazmy 21(11), 975–999 (1995).

    Google Scholar 

  25. V. N. Oraevsky, Yu. Ya. Ruzhin, V. S. Dokukin, and A. S. Volokitin, “APEX Project,” in Scientific Problems of the “APEX” Project, Simulation and Experimental Technique and Equipment, Ed. by V. N. Oraevsky and Yu. Ya. Ruzhina (Nauka, Moscow, 1992), pp. 6–16 [in Russian].

    Google Scholar 

  26. H. Oya, A. Marioka, and T. Obara, “Leaked AKR and Terrestrial Kilometric Radiation Discovered by the Plasma Wave and Planetary Sounder Experiments on Board the Ohzora (Exos-C). Satellite Instrumentation and Observations Results of Plasma Wave Phenomena,” J. Geomagn. Geoelectr. 37, 237–262 (1985).

    Google Scholar 

  27. G. Paschman, “Angular Distribution of Auroral Electrons in the Energy Range 0.8 to 16 KeV,” J. Geophys. Res. 77(31), 6111–6120 (1972).

    Google Scholar 

  28. J. G. Roederer, Dynamics of Geomagnetically Trapped Radiation (Springer-Verlag, Berlin, 1970; Mir, Moscow, 1972).

    Google Scholar 

  29. N. M. Shutte and N. I. Izhovkina, “On Properties of Electrostatic Turbulence and Observations of Nonmaxwellian Distributions of Charged Particles in the Low-Latitude Magnetosphere,” Kosm. Issled. 29(3), 422–426 (1991).

    Google Scholar 

  30. N. M. Shutte, M. V. Tel’tsov, B. V. Mar’in, et al., “Dynamics of High-Latitude Beams of Charged Particles as Measured by the “APEX” Satellite,” Geomagn. Aeron. 36(2), 61–68 (1996).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © N.I. Izhovkina, I.S. Prutensky, S.A. Pulinets, Z. Klos, H. Rothkaehl, 2007, published in Geomagnetizm i Aeronomiya, 2007, Vol. 47, No. 6, pp. 780–791.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Izhovkina, N.I., Prutensky, I.S., Pulinets, S.A. et al. Wave emission during a plasma density jump in the auroral zone of the topside ionosphere according to the APEX satellite data. Geomagn. Aeron. 47, 739–749 (2007). https://doi.org/10.1134/S0016793207060060

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016793207060060

PACS numbers

Navigation